These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

745 related articles for article (PubMed ID: 19070668)

  • 41. Machine learning applications to neuroimaging for glioma detection and classification: An artificial intelligence augmented systematic review.
    Buchlak QD; Esmaili N; Leveque JC; Bennett C; Farrokhi F; Piccardi M
    J Clin Neurosci; 2021 Jul; 89():177-198. PubMed ID: 34119265
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Unsupervised analysis of fMRI data using kernel canonical correlation.
    Hardoon DR; Mourão-Miranda J; Brammer M; Shawe-Taylor J
    Neuroimage; 2007 Oct; 37(4):1250-9. PubMed ID: 17686634
    [TBL] [Abstract][Full Text] [Related]  

  • 43. An fMRI normative database for connectivity networks using one-class support vector machines.
    Sato JR; da Graça Morais Martin M; Fujita A; Mourão-Miranda J; Brammer MJ; Amaro E
    Hum Brain Mapp; 2009 Apr; 30(4):1068-76. PubMed ID: 18412113
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Multiclass fMRI data decoding and visualization using supervised self-organizing maps.
    Hausfeld L; Valente G; Formisano E
    Neuroimage; 2014 Aug; 96():54-66. PubMed ID: 24531045
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Image-based biomarkers for solid tumor quantification.
    Savadjiev P; Chong J; Dohan A; Agnus V; Forghani R; Reinhold C; Gallix B
    Eur Radiol; 2019 Oct; 29(10):5431-5440. PubMed ID: 30963275
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Sparse regularization techniques provide novel insights into outcome integration processes.
    Mohr H; Wolfensteller U; Frimmel S; Ruge H
    Neuroimage; 2015 Jan; 104():163-76. PubMed ID: 25467302
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Pairwise Classifier Ensemble with Adaptive Sub-Classifiers for fMRI Pattern Analysis.
    Kim E; Park H
    Neurosci Bull; 2017 Feb; 33(1):41-52. PubMed ID: 27838826
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Revealing representational content with pattern-information fMRI--an introductory guide.
    Mur M; Bandettini PA; Kriegeskorte N
    Soc Cogn Affect Neurosci; 2009 Mar; 4(1):101-9. PubMed ID: 19151374
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Sequential Dictionary Learning From Correlated Data: Application to fMRI Data Analysis.
    Seghouane AK; Iqbal A
    IEEE Trans Image Process; 2017 Jun; 26(6):3002-3015. PubMed ID: 28333636
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Predicting subject-driven actions and sensory experience in a virtual world with relevance vector machine regression of fMRI data.
    Valente G; De Martino F; Esposito F; Goebel R; Formisano E
    Neuroimage; 2011 May; 56(2):651-61. PubMed ID: 20888922
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Feature selection of fMRI data based on normalized mutual information and fisher discriminant ratio.
    Wang Y; Ji J; Liang P
    J Xray Sci Technol; 2016 Mar; 24(3):467-75. PubMed ID: 27257882
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A study of decoding human brain activities from simultaneous data of EEG and fMRI using MVPA.
    Zafar R; Kamel N; Naufal M; Malik AS; Dass SC; Ahmad RF; Abdullah JM; Reza F
    Australas Phys Eng Sci Med; 2018 Sep; 41(3):633-645. PubMed ID: 29948968
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Characteristics and value of machine learning for imaging in high content screening.
    Klenk JA
    Methods Mol Biol; 2007; 356():83-94. PubMed ID: 16988396
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Using human brain activity to guide machine learning.
    Fong RC; Scheirer WJ; Cox DD
    Sci Rep; 2018 Mar; 8(1):5397. PubMed ID: 29599461
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Enabling machine learning in X-ray-based procedures via realistic simulation of image formation.
    Unberath M; Zaech JN; Gao C; Bier B; Goldmann F; Lee SC; Fotouhi J; Taylor R; Armand M; Navab N
    Int J Comput Assist Radiol Surg; 2019 Sep; 14(9):1517-1528. PubMed ID: 31187399
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Learn ++.NC: combining ensemble of classifiers with dynamically weighted consult-and-vote for efficient incremental learning of new classes.
    Muhlbaier MD; Topalis A; Polikar R
    IEEE Trans Neural Netw; 2009 Jan; 20(1):152-68. PubMed ID: 19109088
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Identifying fluorescently labeled single molecules in image stacks using machine learning.
    Rifkin SA
    Methods Mol Biol; 2011; 772():329-48. PubMed ID: 22065448
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Artificial Intelligence-Assisted Gastroenterology- Promises and Pitfalls.
    Ruffle JK; Farmer AD; Aziz Q
    Am J Gastroenterol; 2019 Mar; 114(3):422-428. PubMed ID: 30315284
    [TBL] [Abstract][Full Text] [Related]  

  • 59. An empirical solution for over-pruning with a novel ensemble-learning method for fMRI decoding.
    Hirose S; Nambu I; Naito E
    J Neurosci Methods; 2015 Jan; 239():238-45. PubMed ID: 25445247
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Liver tumor detection and segmentation using kernel-based Extreme Learning Machine.
    Huang W; Li N; Lin Z; Huang GB; Zong W; Zhou J; Duan Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():3662-5. PubMed ID: 24110524
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 38.