These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 19071623)

  • 1. Biosensors as a tool for the antioxidant status evaluation.
    Mello LD; Kubota LT
    Talanta; 2007 Apr; 72(2):335-48. PubMed ID: 19071623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic determinants of dietary antioxidant status.
    Da Costa LA; García-Bailo B; Badawi A; El-Sohemy A
    Prog Mol Biol Transl Sci; 2012; 108():179-200. PubMed ID: 22656378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards a reliable technology for antioxidant capacity and oxidative damage evaluation: electrochemical (bio)sensors.
    Barroso MF; de-los-Santos-Álvarez N; Delerue-Matos C; Oliveira MB
    Biosens Bioelectron; 2011 Dec; 30(1):1-12. PubMed ID: 21963095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of microorganisms using biosensors-a smarter way towards detection techniques.
    Nayak M; Kotian A; Marathe S; Chakravortty D
    Biosens Bioelectron; 2009 Dec; 25(4):661-7. PubMed ID: 19782558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of antioxidant activity and genotoxicity of alcoholic and aqueous beverages and pomace derived from ripe fruits of Cyphomandra betacea Sendt.
    Ordóñez RM; Cardozo ML; Zampini IC; Isla MI
    J Agric Food Chem; 2010 Jan; 58(1):331-7. PubMed ID: 19938860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application and potential of capillary electroseparation methods to determine antioxidant phenolic compounds from plant food material.
    Hurtado-Fernández E; Gómez-Romero M; Carrasco-Pancorbo A; Fernández-Gutiérrez A
    J Pharm Biomed Anal; 2010 Dec; 53(5):1130-60. PubMed ID: 20719447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A model for the role of the proline-linked pentose-phosphate pathway in phenolic phytochemical bio-synthesis and mechanism of action for human health and environmental applications.
    Shetty K; Wahlqvist ML
    Asia Pac J Clin Nutr; 2004; 13(1):1-24. PubMed ID: 15003910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosensors for environmental monitoring A global perspective.
    Rodriguez-Mozaz S; Alda MJ; Marco MP; Barceló D
    Talanta; 2005 Jan; 65(2):291-7. PubMed ID: 18969798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Whole-cell living biosensors--are they ready for environmental application?
    Harms H; Wells MC; van der Meer JR
    Appl Microbiol Biotechnol; 2006 Apr; 70(3):273-80. PubMed ID: 16463172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method.
    Apak R; Güçlü K; Ozyürek M; Karademir SE
    J Agric Food Chem; 2004 Dec; 52(26):7970-81. PubMed ID: 15612784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cupric ion reducing antioxidant capacity assay for food antioxidants: vitamins, polyphenolics, and flavonoids in food extracts.
    Apak R; Güçlü K; Ozyürek M; Bektas Oğlu B; Bener M
    Methods Mol Biol; 2008; 477():163-93. PubMed ID: 19082947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetically engineered microbial biosensors for in situ monitoring of environmental pollution.
    Shin HJ
    Appl Microbiol Biotechnol; 2011 Feb; 89(4):867-77. PubMed ID: 21063700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of liposomes to evaluate the role of membrane interactions on antioxidant activity.
    Reis S; Lúcio M; Segundo M; Lima JL
    Methods Mol Biol; 2010; 606():167-88. PubMed ID: 20013397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of antioxidants in foods and biological samples: a short critique.
    Dilis V; Trichopoulou A
    Int J Food Sci Nutr; 2010 Aug; 61(5):441-8. PubMed ID: 20109127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical biosensor technology: application to pesticide detection.
    Palchetti I; Laschi S; Mascini M
    Methods Mol Biol; 2009; 504():115-26. PubMed ID: 19159094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative evaluation of the antioxidant potential of infant cereals produced from purple wheat and red rice grains and LC-MS analysis of their anthocyanins.
    Hirawan R; Diehl-Jones W; Beta T
    J Agric Food Chem; 2011 Dec; 59(23):12330-41. PubMed ID: 22035073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Studies of several analytical methods for antioxidant potential evaluation in food].
    Marc F; Davin A; Deglène-Benbrahim L; Ferrand C; Baccaunaud M; Fritsch P
    Med Sci (Paris); 2004 Apr; 20(4):458-63. PubMed ID: 15124120
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An integrated approach to evaluate food antioxidant capacity.
    Sun T; Tanumihardjo SA
    J Food Sci; 2007 Nov; 72(9):R159-65. PubMed ID: 18034745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cognitive and behavioral assessment in dogs and pet food market applications.
    Zicker SC
    Prog Neuropsychopharmacol Biol Psychiatry; 2005 Mar; 29(3):455-9. PubMed ID: 15795054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measuring antioxidant effectiveness in food.
    Decker EA; Warner K; Richards MP; Shahidi F
    J Agric Food Chem; 2005 May; 53(10):4303-10. PubMed ID: 15884875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.