These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 19071638)

  • 1. Biocompatible core-shell nanoparticle-based surface-enhanced Raman scattering probes for detection of DNA related to HIV gene using silica-coated magnetic nanoparticles as separation tools.
    Liang Y; Gong JL; Huang Y; Zheng Y; Jiang JH; Shen GL; Yu RQ
    Talanta; 2007 Apr; 72(2):443-9. PubMed ID: 19071638
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ag/SiO2 core-shell nanoparticle-based surface-enhanced Raman probes for immunoassay of cancer marker using silica-coated magnetic nanoparticles as separation tools.
    Gong JL; Liang Y; Huang Y; Chen JW; Jiang JH; Shen GL; Yu RQ
    Biosens Bioelectron; 2007 Feb; 22(7):1501-7. PubMed ID: 16971110
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface-enhanced Raman scattering detection of DNA derived from the west nile virus genome using magnetic capture of Raman-active gold nanoparticles.
    Zhang H; Harpster MH; Park HJ; Johnson PA; Wilson WC
    Anal Chem; 2011 Jan; 83(1):254-60. PubMed ID: 21121693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface-enhanced Raman scattering detection of DNAs derived from virus genomes using Au-coated paramagnetic nanoparticles.
    Zhang H; Harpster MH; Wilson WC; Johnson PA
    Langmuir; 2012 Feb; 28(8):4030-7. PubMed ID: 22276995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shape-dependent surface-enhanced Raman scattering in gold-Raman probe-silica sandwiched nanoparticles for biocompatible applications.
    Li M; Cushing SK; Zhang J; Lankford J; Aguilar ZP; Ma D; Wu N
    Nanotechnology; 2012 Mar; 23(11):115501. PubMed ID: 22383452
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A rapid method for detection of genetically modified organisms based on magnetic separation and surface-enhanced Raman scattering.
    Guven B; Boyacı İH; Tamer U; Çalık P
    Analyst; 2012 Jan; 137(1):202-8. PubMed ID: 22049365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gram-scale synthesis and biofunctionalization of silica-coated silver nanoparticles for fast colorimetric DNA detection.
    Liu S; Zhang Z; Han M
    Anal Chem; 2005 Apr; 77(8):2595-600. PubMed ID: 15828798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel route for immobilization of oligonucleotides onto modified silica nanoparticles.
    Rao KS; Rani SU; Charyulu DK; Kumar KN; Lee BK; Lee HY; Kawai T
    Anal Chim Acta; 2006 Aug; 576(2):177-83. PubMed ID: 17723630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aggregation effects of gold nanoparticles for single-base mismatch detection in influenza A (H1N1) DNA sequences using fluorescence and Raman measurements.
    Ganbold EO; Kang T; Lee K; Lee SY; Joo SW
    Colloids Surf B Biointerfaces; 2012 May; 93():148-53. PubMed ID: 22261178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and characterization of surface-enhanced Raman scattering tags with Ag/SiO2 core-shell nanostructures using reverse micelle technology.
    Gong JL; Jiang JH; Liang Y; Shen GL; Yu RQ
    J Colloid Interface Sci; 2006 Jun; 298(2):752-6. PubMed ID: 16457836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of adenosine triphosphate with an aptamer biosensor based on surface-enhanced Raman scattering.
    Li M; Zhang J; Suri S; Sooter LJ; Ma D; Wu N
    Anal Chem; 2012 Mar; 84(6):2837-42. PubMed ID: 22380526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Silver nanoparticle-based ultrasensitive chemiluminescent detection of DNA hybridization and single-nucleotide polymorphisms.
    Liu CH; Li ZP; Du BA; Duan XR; Wang YC
    Anal Chem; 2006 Jun; 78(11):3738-44. PubMed ID: 16737231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single base extension reaction-based surface enhanced Raman spectroscopy for DNA methylation assay.
    Hu J; Zhang CY
    Biosens Bioelectron; 2012 Jan; 31(1):451-7. PubMed ID: 22129682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A two-color-change, nanoparticle-based method for DNA detection.
    Cao YC; Jin R; Thaxton CS; Mirkin CA
    Talanta; 2005 Sep; 67(3):449-55. PubMed ID: 18970188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multienzyme-nanoparticles amplification for sensitive virus genotyping in microfluidic microbeads array using Au nanoparticle probes and quantum dots as labels.
    Zhang H; Liu L; Li CW; Fu H; Chen Y; Yang M
    Biosens Bioelectron; 2011 Nov; 29(1):89-96. PubMed ID: 21872460
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA sequence detection using surface-enhanced resonance Raman spectroscopy in a homogeneous multiplexed assay.
    MacAskill A; Crawford D; Graham D; Faulds K
    Anal Chem; 2009 Oct; 81(19):8134-40. PubMed ID: 19743872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sub-attomolar HIV-1 DNA detection using surface-enhanced Raman spectroscopy.
    Hu J; Zheng PC; Jiang JH; Shen GL; Yu RQ; Liu GK
    Analyst; 2010 May; 135(5):1084-9. PubMed ID: 20419260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Core-shell nanostructures for ultrasensitive detection of α-thrombin.
    Chen X; Liu H; Zhou X; Hu J
    Nanoscale; 2010 Dec; 2(12):2841-6. PubMed ID: 20877894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of core-shell surface-enhanced Raman tags for bioimaging.
    Liu X; Knauer M; Ivleva NP; Niessner R; Haisch C
    Anal Chem; 2010 Jan; 82(1):441-6. PubMed ID: 19957963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis, characterization, and 3D-FDTD simulation of Ag@SiO2 nanoparticles for shell-isolated nanoparticle-enhanced Raman spectroscopy.
    Uzayisenga V; Lin XD; Li LM; Anema JR; Yang ZL; Huang YF; Lin HX; Li SB; Li JF; Tian ZQ
    Langmuir; 2012 Jun; 28(24):9140-6. PubMed ID: 22506587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.