These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

382 related articles for article (PubMed ID: 19072143)

  • 1. Signaling components of redox active endosomes: the redoxosomes.
    Oakley FD; Abbott D; Li Q; Engelhardt JF
    Antioxid Redox Signal; 2009 Jun; 11(6):1313-33. PubMed ID: 19072143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation of Redox-Active Endosomes (Redoxosomes) and Assessment of NOX Activity.
    Shahin WS; Engelhardt JF
    Methods Mol Biol; 2019; 1982():461-472. PubMed ID: 31172489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endosomal Nox2 facilitates redox-dependent induction of NF-kappaB by TNF-alpha.
    Li Q; Spencer NY; Oakley FD; Buettner GR; Engelhardt JF
    Antioxid Redox Signal; 2009 Jun; 11(6):1249-63. PubMed ID: 19113817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The basic biology of redoxosomes in cytokine-mediated signal transduction and implications for disease-specific therapies.
    Spencer NY; Engelhardt JF
    Biochemistry; 2014 Mar; 53(10):1551-64. PubMed ID: 24555469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Localizing NADPH oxidase-derived ROS.
    Ushio-Fukai M
    Sci STKE; 2006 Aug; 2006(349):re8. PubMed ID: 16926363
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cytokine activation of nuclear factor kappa B in vascular smooth muscle cells requires signaling endosomes containing Nox1 and ClC-3.
    Miller FJ; Filali M; Huss GJ; Stanic B; Chamseddine A; Barna TJ; Lamb FS
    Circ Res; 2007 Sep; 101(7):663-71. PubMed ID: 17673675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Point mutations in the proline-rich region of p22phox are dominant inhibitors of Nox1- and Nox2-dependent reactive oxygen generation.
    Kawahara T; Ritsick D; Cheng G; Lambeth JD
    J Biol Chem; 2005 Sep; 280(36):31859-69. PubMed ID: 15994299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nox2 and Rac1 regulate H2O2-dependent recruitment of TRAF6 to endosomal interleukin-1 receptor complexes.
    Li Q; Harraz MM; Zhou W; Zhang LN; Ding W; Zhang Y; Eggleston T; Yeaman C; Banfi B; Engelhardt JF
    Mol Cell Biol; 2006 Jan; 26(1):140-54. PubMed ID: 16354686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Involvement of Rac1 in activation of multicomponent Nox1- and Nox3-based NADPH oxidases.
    Ueyama T; Geiszt M; Leto TL
    Mol Cell Biol; 2006 Mar; 26(6):2160-74. PubMed ID: 16507994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endosomal NADPH oxidase regulates c-Src activation following hypoxia/reoxygenation injury.
    Li Q; Zhang Y; Marden JJ; Banfi B; Engelhardt JF
    Biochem J; 2008 May; 411(3):531-41. PubMed ID: 18397177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A differential role for endocytosis in receptor-mediated activation of Nox1.
    Miller FJ; Chu X; Stanic B; Tian X; Sharma RV; Davisson RL; Lamb FS
    Antioxid Redox Signal; 2010 Mar; 12(5):583-93. PubMed ID: 19737091
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Endotoxin priming of neutrophils requires endocytosis and NADPH oxidase-dependent endosomal reactive oxygen species.
    Lamb FS; Hook JS; Hilkin BM; Huber JN; Volk AP; Moreland JG
    J Biol Chem; 2012 Apr; 287(15):12395-404. PubMed ID: 22235113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organizers and activators: Cytosolic Nox proteins impacting on vascular function.
    Schröder K; Weissmann N; Brandes RP
    Free Radic Biol Med; 2017 Aug; 109():22-32. PubMed ID: 28336130
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox regulation of Nox proteins.
    Pendyala S; Natarajan V
    Respir Physiol Neurobiol; 2010 Dec; 174(3):265-71. PubMed ID: 20883826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Receptor activation of NADPH oxidases.
    Petry A; Weitnauer M; Görlach A
    Antioxid Redox Signal; 2010 Aug; 13(4):467-87. PubMed ID: 20001746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Downstream targets and intracellular compartmentalization in Nox signaling.
    Chen K; Craige SE; Keaney JF
    Antioxid Redox Signal; 2009 Oct; 11(10):2467-80. PubMed ID: 19309256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipid rafts and caveolin-1 coordinate interleukin-1beta (IL-1beta)-dependent activation of NFkappaB by controlling endocytosis of Nox2 and IL-1beta receptor 1 from the plasma membrane.
    Oakley FD; Smith RL; Engelhardt JF
    J Biol Chem; 2009 Nov; 284(48):33255-64. PubMed ID: 19801678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular evolution of Phox-related regulatory subunits for NADPH oxidase enzymes.
    Kawahara T; Lambeth JD
    BMC Evol Biol; 2007 Sep; 7():178. PubMed ID: 17900370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compartmentalization of redox signaling through NADPH oxidase-derived ROS.
    Ushio-Fukai M
    Antioxid Redox Signal; 2009 Jun; 11(6):1289-99. PubMed ID: 18999986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activated glycine receptors may decrease endosomal NADPH oxidase activity by opposing ClC-3-mediated efflux of chloride from endosomes.
    McCarty MF; Iloki-Assanga S; Lujan LML; DiNicolantonio JJ
    Med Hypotheses; 2019 Feb; 123():125-129. PubMed ID: 30696582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.