These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 19072298)

  • 1. Common pharmacophore identification using frequent clique detection algorithm.
    Podolyan Y; Karypis G
    J Chem Inf Model; 2009 Jan; 49(1):13-21. PubMed ID: 19072298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PharmID: pharmacophore identification using Gibbs sampling.
    Feng J; Sanil A; Young SS
    J Chem Inf Model; 2006; 46(3):1352-9. PubMed ID: 16711754
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deterministic pharmacophore detection via multiple flexible alignment of drug-like molecules.
    Schneidman-Duhovny D; Dror O; Inbar Y; Nussinov R; Wolfson HJ
    J Comput Biol; 2008 Sep; 15(7):737-54. PubMed ID: 18662104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A self-organizing algorithm for molecular alignment and pharmacophore development.
    Bandyopadhyay D; Agrafiotis DK
    J Comput Chem; 2008 Apr; 29(6):965-82. PubMed ID: 17999384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An extensive and diverse set of molecular overlays for the validation of pharmacophore programs.
    Giangreco I; Cosgrove DA; Packer MJ
    J Chem Inf Model; 2013 Apr; 53(4):852-66. PubMed ID: 23565904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PharmaGist: a webserver for ligand-based pharmacophore detection.
    Schneidman-Duhovny D; Dror O; Inbar Y; Nussinov R; Wolfson HJ
    Nucleic Acids Res; 2008 Jul; 36(Web Server issue):W223-8. PubMed ID: 18424800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recursive distance partitioning algorithm for common pharmacophore identification.
    Zhu F; Agrafiotis DK
    J Chem Inf Model; 2007; 47(4):1619-25. PubMed ID: 17547387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GALAHAD: 1. pharmacophore identification by hypermolecular alignment of ligands in 3D.
    Richmond NJ; Abrams CA; Wolohan PR; Abrahamian E; Willett P; Clark RD
    J Comput Aided Mol Des; 2006 Sep; 20(9):567-87. PubMed ID: 17051338
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flexible 3D pharmacophores as descriptors of dynamic biological space.
    Nettles JH; Jenkins JL; Williams C; Clark AM; Bender A; Deng Z; Davies JW; Glick M
    J Mol Graph Model; 2007 Oct; 26(3):622-33. PubMed ID: 17395510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High content pharmacophores from molecular fields: a biologically relevant method for comparing and understanding ligands.
    Cheeseright TJ; Mackey MD; Scoffin RA
    Curr Comput Aided Drug Des; 2011 Sep; 7(3):190-205. PubMed ID: 21726191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PharmMapper server: a web server for potential drug target identification using pharmacophore mapping approach.
    Liu X; Ouyang S; Yu B; Liu Y; Huang K; Gong J; Zheng S; Li Z; Li H; Jiang H
    Nucleic Acids Res; 2010 Jul; 38(Web Server issue):W609-14. PubMed ID: 20430828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GRID-based three-dimensional pharmacophores II: PharmBench, a benchmark data set for evaluating pharmacophore elucidation methods.
    Cross S; Ortuso F; Baroni M; Costa G; Distinto S; Moraca F; Alcaro S; Cruciani G
    J Chem Inf Model; 2012 Oct; 52(10):2599-608. PubMed ID: 22970854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated site-directed drug design: approaches to the formation of 3D molecular graphs.
    Lewis RA
    J Comput Aided Mol Des; 1990 Jun; 4(2):205-10. PubMed ID: 2213065
    [No Abstract]   [Full Text] [Related]  

  • 14. Greedy 3-Point Search (G3PS)-A Novel Algorithm for Pharmacophore Alignment.
    Permann C; Seidel T; Langer T
    Molecules; 2021 Nov; 26(23):. PubMed ID: 34885781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MARS: computing three-dimensional alignments for multiple ligands using pairwise similarities.
    Klabunde T; Giegerich C; Evers A
    J Chem Inf Model; 2012 Aug; 52(8):2022-30. PubMed ID: 22794356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pharmacophore-based molecular docking to account for ligand flexibility.
    Joseph-McCarthy D; Thomas BE; Belmarsh M; Moustakas D; Alvarez JC
    Proteins; 2003 May; 51(2):172-88. PubMed ID: 12660987
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecule-pharmacophore superpositioning and pattern matching in computational drug design.
    Wolber G; Seidel T; Bendix F; Langer T
    Drug Discov Today; 2008 Jan; 13(1-2):23-9. PubMed ID: 18190860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A fast new approach to pharmacophore mapping and its application to dopaminergic and benzodiazepine agonists.
    Martin YC; Bures MG; Danaher EA; DeLazzer J; Lico I; Pavlik PA
    J Comput Aided Mol Des; 1993 Feb; 7(1):83-102. PubMed ID: 8097240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new paradigm for pattern recognition of drugs.
    Potemkin VA; Grishina MA
    J Comput Aided Mol Des; 2008; 22(6-7):489-505. PubMed ID: 18357415
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel DOCK clique driven 3D similarity database search tools for molecule shape matching and beyond: adding flexibility to the search for ligand kin.
    Good AC
    J Mol Graph Model; 2007 Oct; 26(3):656-66. PubMed ID: 17482856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.