These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 19072300)

  • 1. Inhibition of ice crystal growth by synthetic glycopolymers: implications for the rational design of antifreeze glycoprotein mimics.
    Gibson MI; Barker CA; Spain SG; Albertin L; Cameron NR
    Biomacromolecules; 2009 Feb; 10(2):328-33. PubMed ID: 19072300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solution conformation of C-linked antifreeze glycoprotein analogues and modulation of ice recrystallization.
    Tam RY; Rowley CN; Petrov I; Zhang T; Afagh NA; Woo TK; Ben RN
    J Am Chem Soc; 2009 Nov; 131(43):15745-53. PubMed ID: 19824639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mimicking the Ice Recrystallization Activity of Biological Antifreezes. When is a New Polymer "Active"?
    Biggs CI; Stubbs C; Graham B; Fayter AER; Hasan M; Gibson MI
    Macromol Biosci; 2019 Jul; 19(7):e1900082. PubMed ID: 31087781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control over the structure of ice and water by block copolymer additives.
    Mastai Y; Rudloff J; Cölfen H; Antonietti M
    Chemphyschem; 2002 Jan; 3(1):119-23. PubMed ID: 12465484
    [No Abstract]   [Full Text] [Related]  

  • 5. Ice recrystallization kinetics in the presence of synthetic antifreeze glycoprotein analogues using the framework of LSW theory.
    Budke C; Heggemann C; Koch M; Sewald N; Koop T
    J Phys Chem B; 2009 Mar; 113(9):2865-73. PubMed ID: 19708116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing the ability of a short fluorinated antifreeze glycopeptide and a fluorinated carbohydrate derivative to inhibit ice recrystallization.
    Chaytor JL; Ben RN
    Bioorg Med Chem Lett; 2010 Sep; 20(17):5251-4. PubMed ID: 20655221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structurally diverse disaccharide analogs of antifreeze glycoproteins and their ability to inhibit ice recrystallization.
    Balcerzak AK; Ferreira SS; Trant JF; Ben RN
    Bioorg Med Chem Lett; 2012 Feb; 22(4):1719-21. PubMed ID: 22264482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antifreeze (glyco)protein mimetic behavior of poly(vinyl alcohol): detailed structure ice recrystallization inhibition activity study.
    Congdon T; Notman R; Gibson MI
    Biomacromolecules; 2013 May; 14(5):1578-86. PubMed ID: 23534826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A serendipitous discovery of antifreeze protein-specific activity in C-linked antifreeze glycoprotein analogs.
    Eniade A; Purushotham M; Ben RN; Wang JB; Horwath K
    Cell Biochem Biophys; 2003; 38(2):115-24. PubMed ID: 12777711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antifreeze glycopeptide analogues: microwave-enhanced synthesis and functional studies.
    Heggemann C; Budke C; Schomburg B; Majer Z; Wissbrock M; Koop T; Sewald N
    Amino Acids; 2010 Jan; 38(1):213-22. PubMed ID: 19165574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of C-linked triazole-containing AFGP analogues and their ability to inhibit ice recrystallization.
    Capicciotti CJ; Trant JF; Leclère M; Ben RN
    Bioconjug Chem; 2011 Apr; 22(4):605-16. PubMed ID: 21456533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Salt-induced enhancement of antifreeze protein activity: a salting-out effect.
    Kristiansen E; Pedersen SA; Zachariassen KE
    Cryobiology; 2008 Oct; 57(2):122-9. PubMed ID: 18703038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of antifreeze proteins with hydrocarbon hydrates.
    Ohno H; Susilo R; Gordienko R; Ripmeester J; Walker VK
    Chemistry; 2010 Sep; 16(34):10409-17. PubMed ID: 20623806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and synthesis of antifreeze glycoproteins and mimics.
    Garner J; Harding MM
    Chembiochem; 2010 Dec; 11(18):2489-98. PubMed ID: 21108270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mimicking the properties of antifreeze glycoproteins: synthesis and characterization of a model system for ice nucleation and antifreeze studies.
    Hederos M; Konradsson P; Borgh A; Liedberg B
    J Phys Chem B; 2005 Aug; 109(33):15849-59. PubMed ID: 16853014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new model for simulating 3-d crystal growth and its application to the study of antifreeze proteins.
    Wathen B; Kuiper M; Walker V; Jia Z
    J Am Chem Soc; 2003 Jan; 125(3):729-37. PubMed ID: 12526672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New simulation model of multicomponent crystal growth and inhibition.
    Wathen B; Kuiper M; Walker V; Jia Z
    Chemistry; 2004 Apr; 10(7):1598-605. PubMed ID: 15054746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Apparatus for single ice crystal growth from the melt.
    Zepeda S; Nakatsubo S; Furukawa Y
    Rev Sci Instrum; 2009 Nov; 80(11):115102. PubMed ID: 19947752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ice-structuring peptides derived from bovine collagen.
    Wang S; Damodaran S
    J Agric Food Chem; 2009 Jun; 57(12):5501-9. PubMed ID: 19480387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blocking rapid ice crystal growth through nonbasal plane adsorption of antifreeze proteins.
    Olijve LL; Meister K; DeVries AL; Duman JG; Guo S; Bakker HJ; Voets IK
    Proc Natl Acad Sci U S A; 2016 Apr; 113(14):3740-5. PubMed ID: 26936953
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.