These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 19072302)

  • 21. Strong carbon-nanotube fibers spun from long carbon-nanotube arrays.
    Zhang X; Li Q; Tu Y; Li Y; Coulter JY; Zheng L; Zhao Y; Jia Q; Peterson DE; Zhu Y
    Small; 2007 Feb; 3(2):244-8. PubMed ID: 17262764
    [No Abstract]   [Full Text] [Related]  

  • 22. Unstable micellarization of carbon-nanotube solutions for low-loss reactivity and crosslinking.
    Chowdhary D; Kim WE; Kouklin N
    Small; 2007 Feb; 3(2):226-9. PubMed ID: 17191287
    [No Abstract]   [Full Text] [Related]  

  • 23. Transparent conductive single-walled carbon nanotube networks with precisely tunable ratios of semiconducting and metallic nanotubes.
    Blackburn JL; Barnes TM; Beard MC; Kim YH; Tenent RC; McDonald TJ; To B; Coutts TJ; Heben MJ
    ACS Nano; 2008 Jun; 2(6):1266-74. PubMed ID: 19206344
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Investigation of parameters controlling the dielectrophoretic assembly of carbon nanotubes on microelectrodes.
    Dimaki M; Bøggild P
    J Nanosci Nanotechnol; 2008 Apr; 8(4):1973-8. PubMed ID: 18572601
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Height independent compressive modulus of vertically aligned carbon nanotube arrays.
    Tong T; Zhao Y; Delzeit L; Kashani A; Meyyappan M; Majumdar A
    Nano Lett; 2008 Feb; 8(2):511-5. PubMed ID: 18189439
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structure and dynamics of confined water inside narrow carbon nanotubes.
    Mukherjee B; Maiti PK; Dasgupta C; Sood AK
    J Nanosci Nanotechnol; 2007 Jun; 7(6):1796-9. PubMed ID: 17654942
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inkjet printing of transparent, electrically conducting single-walled carbon-nanotube composites.
    Small WR; in het Panhuis M
    Small; 2007 Sep; 3(9):1500-3. PubMed ID: 17668430
    [No Abstract]   [Full Text] [Related]  

  • 28. Plasma-assembled carbon nanotubes: electric field-related effects.
    Levchenko I; Ostrikov K; Keidar M
    J Nanosci Nanotechnol; 2008 Nov; 8(11):6112-22. PubMed ID: 19198353
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Flexible orientation control of ultralong single-walled carbon nanotubes by gas flow.
    Liu Y; Hong J; Zhang Y; Cui R; Wang J; Tan W; Li Y
    Nanotechnology; 2009 May; 20(18):185601. PubMed ID: 19420617
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ultralight conductive carbon-nanotube-polymer composite.
    Xu XB; Li ZM; Shi L; Bian XC; Xiang ZD
    Small; 2007 Mar; 3(3):408-11. PubMed ID: 17285656
    [No Abstract]   [Full Text] [Related]  

  • 31. Nanoscale microelectrochemical cells on carbon nanotubes.
    Jin X; Zhou W; Zhang S; Chen GZ
    Small; 2007 Sep; 3(9):1513-7. PubMed ID: 17661306
    [No Abstract]   [Full Text] [Related]  

  • 32. Reinforcing mechanisms of single-walled carbon nanotube-reinforced polymer composites.
    Li X; Gao H; Scrivens WA; Fei D; Xu X; Sutton MA; Reynolds AP; Myrick ML
    J Nanosci Nanotechnol; 2007 Jul; 7(7):2309-17. PubMed ID: 17663245
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nanotube electronics: a flexible approach to mobility.
    Hong S; Myung S
    Nat Nanotechnol; 2007 Apr; 2(4):207-8. PubMed ID: 18654263
    [No Abstract]   [Full Text] [Related]  

  • 34. Loosening the DNA wrapping around single-walled carbon nanotubes by increasing the strand length.
    Yang QH; Wang Q; Gale N; Oton CJ; Cui L; Nandhakumar IS; Zhu Z; Tang Z; Brown T; Loh WH
    Nanotechnology; 2009 May; 20(19):195603. PubMed ID: 19420642
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis of carbon nanotubes by rolling up patterned graphene nanoribbons using selective atomic adsorption.
    Yu D; Liu F
    Nano Lett; 2007 Oct; 7(10):3046-50. PubMed ID: 17845065
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improved and large area single-walled carbon nanotube forest growth by controlling the gas flow direction.
    Yasuda S; Futaba DN; Yamada T; Satou J; Shibuya A; Takai H; Arakawa K; Yumura M; Hata K
    ACS Nano; 2009 Dec; 3(12):4164-70. PubMed ID: 19947579
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transport properties of T-shaped and crossed junctions based on graphene nanoribbons.
    OuYang F; Xiao J; Guo R; Zhang H; Xu H
    Nanotechnology; 2009 Feb; 20(5):055202. PubMed ID: 19417339
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Controlled growth of super-aligned carbon nanotube arrays for spinning continuous unidirectional sheets with tunable physical properties.
    Liu K; Sun Y; Chen L; Feng C; Feng X; Jiang K; Zhao Y; Fan S
    Nano Lett; 2008 Feb; 8(2):700-5. PubMed ID: 18269255
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dissymmetric carbon nanotubes by bipolar electrochemistry.
    Warakulwit C; Nguyen T; Majimel J; Delville MH; Lapeyre V; Garrigue P; Ravaine V; Limtrakul J; Kuhn A
    Nano Lett; 2008 Feb; 8(2):500-4. PubMed ID: 18189438
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modeling the effect of dispersed doping agents in carbon nanotubes.
    Rocha CG; Wall A; Rocha AR; Ferreira MS
    J Nanosci Nanotechnol; 2007 Oct; 7(10):3446-9. PubMed ID: 18330155
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.