BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 19072331)

  • 1. Role of the 2-amino group of purines during dNTP polymerization by human DNA polymerase alpha.
    Patro JN; Urban M; Kuchta RD
    Biochemistry; 2009 Jan; 48(1):180-9. PubMed ID: 19072331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of purine-purine mispairs by Sulfolobus solfataricus DNA polymerase IV.
    DeCarlo L; Gowda AS; Suo Z; Spratt TE
    Biochemistry; 2008 Aug; 47(31):8157-64. PubMed ID: 18616289
    [TBL] [Abstract][Full Text] [Related]  

  • 3. B family DNA polymerases asymmetrically recognize pyrimidines and purines.
    Lund TJ; Cavanaugh NA; Joubert N; Urban M; Patro JN; Hocek M; Kuchta RD
    Biochemistry; 2011 Aug; 50(33):7243-50. PubMed ID: 21761848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of purine-purine mispairs during misincorporation and extension by Escherichia coli DNA polymerase I.
    Kretulskie AM; Spratt TE
    Biochemistry; 2006 Mar; 45(11):3740-6. PubMed ID: 16533057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facile polymerization of dNTPs bearing unnatural base analogues by DNA polymerase alpha and Klenow fragment (DNA polymerase I).
    Chiaramonte M; Moore CL; Kincaid K; Kuchta RD
    Biochemistry; 2003 Sep; 42(35):10472-81. PubMed ID: 12950174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human DNA polymerase alpha uses a combination of positive and negative selectivity to polymerize purine dNTPs with high fidelity.
    Beckman J; Kincaid K; Hocek M; Spratt T; Engels J; Cosstick R; Kuchta RD
    Biochemistry; 2007 Jan; 46(2):448-60. PubMed ID: 17209555
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discrimination between right and wrong purine dNTPs by DNA polymerase I from Bacillus stearothermophilus.
    Trostler M; Delier A; Beckman J; Urban M; Patro JN; Spratt TE; Beese LS; Kuchta RD
    Biochemistry; 2009 Jun; 48(21):4633-41. PubMed ID: 19348507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying the features of purine dNTPs that allow accurate and efficient DNA replication by herpes simplex virus I DNA polymerase.
    Cavanaugh NA; Urban M; Beckman J; Spratt TE; Kuchta RD
    Biochemistry; 2009 Apr; 48(15):3554-64. PubMed ID: 19166354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of hoogsteen edge hydrogen bonding at template purines in nucleotide incorporation by human DNA polymerase iota.
    Johnson RE; Haracska L; Prakash L; Prakash S
    Mol Cell Biol; 2006 Sep; 26(17):6435-41. PubMed ID: 16914729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of human DNA polymerase alpha and DNA polymerase I from Bacillus stearothermophilus with hypoxanthine and 8-oxoguanine nucleotides.
    Patro JN; Urban M; Kuchta RD
    Biochemistry; 2009 Sep; 48(34):8271-8. PubMed ID: 19642651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discrimination against purine-pyrimidine mispairs in the polymerase active site of DNA polymerase I: a structural explanation.
    Minnick DT; Liu L; Grindley ND; Kunkel TA; Joyce CM
    Proc Natl Acad Sci U S A; 2002 Feb; 99(3):1194-9. PubMed ID: 11830658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Significance of nucleobase shape complementarity and hydrogen bonding in the formation and stability of the closed polymerase-DNA complex.
    Dzantiev L; Alekseyev YO; Morales JC; Kool ET; Romano LJ
    Biochemistry; 2001 Mar; 40(10):3215-21. PubMed ID: 11258938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic analysis of base-pairing preference for nucleotide incorporation opposite template pyrimidines by human DNA polymerase iota.
    Choi JY; Lim S; Eoff RL; Guengerich FP
    J Mol Biol; 2009 Jun; 389(2):264-74. PubMed ID: 19376129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for Watson-Crick and not Hoogsteen or wobble base pairing in the selection of nucleotides for insertion opposite pyrimidines and a thymine dimer by yeast DNA pol eta.
    Hwang H; Taylor JS
    Biochemistry; 2005 Mar; 44(12):4850-60. PubMed ID: 15779911
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Misincorporation of dNTPs opposite 1,N2-ethenoguanine and 5,6,7,9-tetrahydro-7-hydroxy-9-oxoimidazo[1,2-a]purine in oligonucleotides by Escherichia coli polymerases I exo- and II exo-, T7 polymerase exo-, human immunodeficiency virus-1 reverse transcriptase, and rat polymerase beta.
    Langouët S; Müller M; Guengerich FP
    Biochemistry; 1997 May; 36(20):6069-79. PubMed ID: 9166777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nuclear magnetic resonance investigation of primer--template models: formation of a pyrimidine bulge upon misincorporation.
    Chi LM; Lam SL
    Biochemistry; 2008 Apr; 47(15):4469-76. PubMed ID: 18358004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Factors determining the deriving force of DNA formation: geometrical differences of base pairs, dehydration of bases, and the arginine assisting.
    Sun L; Cukier RI; Bu Y
    J Phys Chem B; 2007 Feb; 111(7):1802-8. PubMed ID: 17266349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Steady-state and pre-steady-state kinetic analysis of dNTP insertion opposite 8-oxo-7,8-dihydroguanine by Escherichia coli polymerases I exo- and II exo-.
    Lowe LG; Guengerich FP
    Biochemistry; 1996 Jul; 35(30):9840-9. PubMed ID: 8703958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of 2-aminopurine fluorescence to examine conformational changes during nucleotide incorporation by DNA polymerase I (Klenow fragment).
    Purohit V; Grindley ND; Joyce CM
    Biochemistry; 2003 Sep; 42(34):10200-11. PubMed ID: 12939148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biochemical behavior of N-oxidized cytosine and adenine bases in DNA polymerase-mediated primer extension reactions.
    Tsunoda H; Kudo T; Masaki Y; Ohkubo A; Seio K; Sekine M
    Nucleic Acids Res; 2011 Apr; 39(7):2995-3004. PubMed ID: 21300642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.