These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 19072835)

  • 61. The N-terminal domain of the Flo11 protein from Saccharomyces cerevisiae is an adhesin without mannose-binding activity.
    Goossens KV; Willaert RG
    FEMS Yeast Res; 2012 Feb; 12(1):78-87. PubMed ID: 22129043
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The role of physicochemical interactions and FLO genes expression in the immobilization of industrially important yeasts by adhesion.
    Kuřec M; Brányik T
    Colloids Surf B Biointerfaces; 2011 Jun; 84(2):491-7. PubMed ID: 21367588
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Yeast flocculation: receptor definition by mnn mutants and concanavalin A.
    Stratford M
    Yeast; 1992 Aug; 8(8):635-45. PubMed ID: 1441743
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Permissive aggregative group formation favors coexistence between cooperators and defectors in yeast.
    Belpaire TER; Pešek J; Lories B; Verstrepen KJ; Steenackers HP; Ramon H; Smeets B
    ISME J; 2022 Oct; 16(10):2305-2312. PubMed ID: 35778439
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Flocculation gene variability in industrial brewer's yeast strains.
    Van Mulders SE; Ghequire M; Daenen L; Verbelen PJ; Verstrepen KJ; Delvaux FR
    Appl Microbiol Biotechnol; 2010 Dec; 88(6):1321-31. PubMed ID: 20809075
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Analysis of adaptation to high ethanol concentration in Saccharomyces cerevisiae using DNA microarray.
    Dinh TN; Nagahisa K; Yoshikawa K; Hirasawa T; Furusawa C; Shimizu H
    Bioprocess Biosyst Eng; 2009 Aug; 32(5):681-8. PubMed ID: 19125301
    [TBL] [Abstract][Full Text] [Related]  

  • 67. [Preliminary proteome analysis for Saccharomyces cerevisiae under different culturing conditions].
    Zhang HM; Yao SJ; Peng LF; Shimizu K
    Sheng Wu Gong Cheng Xue Bao; 2004 May; 20(3):398-402. PubMed ID: 15971613
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A three-way proteomics strategy allows differential analysis of yeast mitochondrial membrane protein complexes under anaerobic and aerobic conditions.
    Helbig AO; de Groot MJ; van Gestel RA; Mohammed S; de Hulster EA; Luttik MA; Daran-Lapujade P; Pronk JT; Heck AJ; Slijper M
    Proteomics; 2009 Oct; 9(20):4787-98. PubMed ID: 19750512
    [TBL] [Abstract][Full Text] [Related]  

  • 69. [Effect of RIM21 gene disruption on flocculation of lager yeast].
    Zhou X; Suo J; Hou D; Liu C; Niu C; Zheng F; Li Q; Wang J
    Sheng Wu Gong Cheng Xue Bao; 2021 Dec; 37(12):4373-4381. PubMed ID: 34984882
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Molecular mechanism of flocculation self-recognition in yeast and its role in mating and survival.
    Goossens KV; Ielasi FS; Nookaew I; Stals I; Alonso-Sarduy L; Daenen L; Van Mulders SE; Stassen C; van Eijsden RG; Siewers V; Delvaux FR; Kasas S; Nielsen J; Devreese B; Willaert RG
    mBio; 2015 Apr; 6(2):. PubMed ID: 25873380
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Carbohydrate utilization and the lager yeast transcriptome during brewery fermentation.
    Gibson BR; Boulton CA; Box WG; Graham NS; Lawrence SJ; Linforth RS; Smart KA
    Yeast; 2008 Aug; 25(8):549-62. PubMed ID: 18668645
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Analysis of the budding yeast pH 4-7 proteome in meiosis.
    Grassl J; Scaife C; Polden J; Daly CN; Iacovella MG; Dunn MJ; Clyne RK
    Proteomics; 2010 Feb; 10(3):506-19. PubMed ID: 20029842
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Purification and partial characterization of a flocculin from brewer's yeast.
    Straver MH; Smit G; Kijne JW
    Appl Environ Microbiol; 1994 Aug; 60(8):2754-8. PubMed ID: 8085818
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise.
    Newman JR; Ghaemmaghami S; Ihmels J; Breslow DK; Noble M; DeRisi JL; Weissman JS
    Nature; 2006 Jun; 441(7095):840-6. PubMed ID: 16699522
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Playing tag with the yeast proteome.
    Andrews BJ; Bader GD; Boone C
    Nat Biotechnol; 2003 Nov; 21(11):1297-9. PubMed ID: 14595360
    [No Abstract]   [Full Text] [Related]  

  • 76. Characterization of specialized flocculent yeasts to improve sparkling wine fermentation.
    Tofalo R; Perpetuini G; Di Gianvito P; Arfelli G; Schirone M; Corsetti A; Suzzi G
    J Appl Microbiol; 2016 Jun; 120(6):1574-84. PubMed ID: 26923379
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Affinity selection of target cells from cell surface displayed libraries: a novel procedure using thermo-responsive magnetic nanoparticles.
    Furukawa H; Shimojyo R; Ohnishi N; Fukuda H; Kondo A
    Appl Microbiol Biotechnol; 2003 Oct; 62(5-6):478-83. PubMed ID: 12750854
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Different genetic responses to oenological conditions between a flocculent wine yeast and its FLO5 deleted strain: Insights from the transcriptome.
    Di Gianvito P; Tesnière C; Suzzi G; Blondin B; Tofalo R
    Food Res Int; 2018 Dec; 114():178-186. PubMed ID: 30361014
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Toward the complete yeast mitochondrial proteome: multidimensional separation techniques for mitochondrial proteomics.
    Reinders J; Zahedi RP; Pfanner N; Meisinger C; Sickmann A
    J Proteome Res; 2006 Jul; 5(7):1543-54. PubMed ID: 16823961
    [TBL] [Abstract][Full Text] [Related]  

  • 80. [Diversity and genetic stability of yeast flocculation caused by variation of tandem repeats in yeast flocculin genes].
    Yue F; Guo X; He X; Zhang B
    Sheng Wu Gong Cheng Xue Bao; 2013 Jul; 29(7):871-9. PubMed ID: 24195354
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.