BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 19073175)

  • 1. Microtubule-dependent association of AKAP350A and CCAR1 with RNA stress granules.
    Kolobova E; Efimov A; Kaverina I; Rishi AK; Schrader JW; Ham AJ; Larocca MC; Goldenring JR
    Exp Cell Res; 2009 Feb; 315(3):542-55. PubMed ID: 19073175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The C-terminal region of A-kinase anchor protein 350 (AKAP350A) enables formation of microtubule-nucleation centers and interacts with pericentriolar proteins.
    Kolobova E; Roland JT; Lapierre LA; Williams JA; Mason TA; Goldenring JR
    J Biol Chem; 2017 Dec; 292(50):20394-20409. PubMed ID: 29054927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinct structural features of caprin-1 mediate its interaction with G3BP-1 and its induction of phosphorylation of eukaryotic translation initiation factor 2alpha, entry to cytoplasmic stress granules, and selective interaction with a subset of mRNAs.
    Solomon S; Xu Y; Wang B; David MD; Schubert P; Kennedy D; Schrader JW
    Mol Cell Biol; 2007 Mar; 27(6):2324-42. PubMed ID: 17210633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The pseudophosphatase MK-STYX inhibits stress granule assembly independently of Ser149 phosphorylation of G3BP-1.
    Barr JE; Munyikwa MR; Frazier EA; Hinton SD
    FEBS J; 2013 Jan; 280(1):273-84. PubMed ID: 23163895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA-Induced Conformational Switching and Clustering of G3BP Drive Stress Granule Assembly by Condensation.
    Guillén-Boixet J; Kopach A; Holehouse AS; Wittmann S; Jahnel M; Schlüßler R; Kim K; Trussina IREA; Wang J; Mateju D; Poser I; Maharana S; Ruer-Gruß M; Richter D; Zhang X; Chang YT; Guck J; Honigmann A; Mahamid J; Hyman AA; Pappu RV; Alberti S; Franzmann TM
    Cell; 2020 Apr; 181(2):346-361.e17. PubMed ID: 32302572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorylation of Tudor-SN, a novel substrate of JNK, is involved in the efficient recruitment of Tudor-SN into stress granules.
    Su C; Gao X; Yang W; Zhao Y; Fu X; Cui X; Zhang C; Xin L; Ren Y; Li L; Shui W; Yang X; Wei M; Yang J
    Biochim Biophys Acta Mol Cell Res; 2017 Mar; 1864(3):562-571. PubMed ID: 28011284
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel role for hSMG-1 in stress granule formation.
    Brown JA; Roberts TL; Richards R; Woods R; Birrell G; Lim YC; Ohno S; Yamashita A; Abraham RT; Gueven N; Lavin MF
    Mol Cell Biol; 2011 Nov; 31(22):4417-29. PubMed ID: 21911475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Newcastle disease virus induces stable formation of
    Sun Y; Dong L; Yu S; Wang X; Zheng H; Zhang P; Meng C; Zhan Y; Tan L; Song C; Qiu X; Wang G; Liao Y; Ding C
    FASEB J; 2017 Apr; 31(4):1337-1353. PubMed ID: 28011649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cataloguing and Selection of mRNAs Localized to Dendrites in Neurons and Regulated by RNA-Binding Proteins in RNA Granules.
    Ohashi R; Shiina N
    Biomolecules; 2020 Jan; 10(2):. PubMed ID: 31978946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large G3BP-induced granules trigger eIF2α phosphorylation.
    Reineke LC; Dougherty JD; Pierre P; Lloyd RE
    Mol Biol Cell; 2012 Sep; 23(18):3499-510. PubMed ID: 22833567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Respiratory syncytial virus induces host RNA stress granules to facilitate viral replication.
    Lindquist ME; Lifland AW; Utley TJ; Santangelo PJ; Crowe JE
    J Virol; 2010 Dec; 84(23):12274-84. PubMed ID: 20844027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AKAP350 at the Golgi apparatus. I. Identification of a distinct Golgi apparatus targeting motif in AKAP350.
    Shanks RA; Steadman BT; Schmidt PH; Goldenring JR
    J Biol Chem; 2002 Oct; 277(43):40967-72. PubMed ID: 12163481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Poly(A)(+) mRNA-binding protein Tudor-SN regulates stress granules aggregation dynamics.
    Gao X; Fu X; Song J; Zhang Y; Cui X; Su C; Ge L; Shao J; Xin L; Saarikettu J; Mei M; Yang X; Wei M; Silvennoinen O; Yao Z; He J; Yang J
    FEBS J; 2015 Mar; 282(5):874-90. PubMed ID: 25559396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AKAP350 modulates microtubule dynamics.
    Larocca MC; Jin M; Goldenring JR
    Eur J Cell Biol; 2006 Jul; 85(7):611-9. PubMed ID: 16356588
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The RasGAP-associated endoribonuclease G3BP assembles stress granules.
    Tourrière H; Chebli K; Zekri L; Courselaud B; Blanchard JM; Bertrand E; Tazi J
    J Cell Biol; 2003 Mar; 160(6):823-31. PubMed ID: 12642610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rasputin a decade on and more promiscuous than ever? A review of G3BPs.
    Alam U; Kennedy D
    Biochim Biophys Acta Mol Cell Res; 2019 Mar; 1866(3):360-370. PubMed ID: 30595162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. G3BP-Caprin1-USP10 complexes mediate stress granule condensation and associate with 40S subunits.
    Kedersha N; Panas MD; Achorn CA; Lyons S; Tisdale S; Hickman T; Thomas M; Lieberman J; McInerney GM; Ivanov P; Anderson P
    J Cell Biol; 2016 Mar; 212(7):845-60. PubMed ID: 27022092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tudor-SN interacts with and co-localizes with G3BP in stress granules under stress conditions.
    Gao X; Ge L; Shao J; Su C; Zhao H; Saarikettu J; Yao X; Yao Z; Silvennoinen O; Yang J
    FEBS Lett; 2010 Aug; 584(16):3525-32. PubMed ID: 20643132
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stress granules regulate double-stranded RNA-dependent protein kinase activation through a complex containing G3BP1 and Caprin1.
    Reineke LC; Kedersha N; Langereis MA; van Kuppeveld FJ; Lloyd RE
    mBio; 2015 Mar; 6(2):e02486. PubMed ID: 25784705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preferential binding of a stable G3BP ribonucleoprotein complex to intron-retaining transcripts in mouse brain and modulation of their expression in the cerebellum.
    Martin S; Bellora N; González-Vallinas J; Irimia M; Chebli K; de Toledo M; Raabe M; Eyras E; Urlaub H; Blencowe BJ; Tazi J
    J Neurochem; 2016 Nov; 139(3):349-368. PubMed ID: 27513819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.