These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 19073214)

  • 21. Acute head-fixed recordings in awake mice with multiple Neuropixels probes.
    Durand S; Heller GR; Ramirez TK; Luviano JA; Williford A; Sullivan DT; Cahoon AJ; Farrell C; Groblewski PA; Bennett C; Siegle JH; Olsen SR
    Nat Protoc; 2023 Feb; 18(2):424-457. PubMed ID: 36477710
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vivo, low-resistance, whole-cell recordings from neurons in the anaesthetized and awake mammalian brain.
    Margrie TW; Brecht M; Sakmann B
    Pflugers Arch; 2002 Jul; 444(4):491-8. PubMed ID: 12136268
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Correlations between the same motor cortex cells and arm muscles during a trained task, free behavior, and natural sleep in the macaque monkey.
    Jackson A; Mavoori J; Fetz EE
    J Neurophysiol; 2007 Jan; 97(1):360-74. PubMed ID: 17021028
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Wireless multi-channel single unit recording in freely moving and vocalizing primates.
    Roy S; Wang X
    J Neurosci Methods; 2012 Jan; 203(1):28-40. PubMed ID: 21933683
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A technique for recording from brain-stem neurones in awake, unrestrained cats.
    Boissonade FM; Banks D; Matthews B
    J Neurosci Methods; 1991 Jun; 38(1):41-6. PubMed ID: 1921467
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Anesthetized- and awake-patched whole-cell recordings in freely moving rats using UV-cured collar-based electrode stabilization.
    Lee D; Shtengel G; Osborne JE; Lee AK
    Nat Protoc; 2014 Dec; 9(12):2784-95. PubMed ID: 25375992
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A method for investigating cortical control of stand and squat in conscious behavioral monkeys.
    Ma C; He J
    J Neurosci Methods; 2010 Sep; 192(1):1-6. PubMed ID: 20600310
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vivo analysis of the spontaneous firing of cerebellar Purkinje cells in awake transgenic mice that model spinocerebellar ataxia type 2.
    Egorova PA; Gavrilova AV; Bezprozvanny IB
    Cell Calcium; 2021 Jan; 93():102319. PubMed ID: 33248384
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mapping cortical mesoscopic networks of single spiking cortical or sub-cortical neurons.
    Xiao D; Vanni MP; Mitelut CC; Chan AW; LeDue JM; Xie Y; Chen AC; Swindale NV; Murphy TH
    Elife; 2017 Feb; 6():. PubMed ID: 28160463
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Construction of microdrive arrays for chronic neural recordings in awake behaving mice.
    Chang EH; Frattini SA; Robbiati S; Huerta PT
    J Vis Exp; 2013 Jul; (77):e50470. PubMed ID: 23851569
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Design of a head fixation device for experiments in behaving monkeys.
    Isoda M; Tsutsui K; Katsuyama N; Naganuma T; Saito N; Furusawa Y; Mushiake H; Taira M; Tanji J
    J Neurosci Methods; 2005 Feb; 141(2):277-82. PubMed ID: 15661310
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-resolution three-dimensional microelectrode brain mapping using stereo microfocal X-ray imaging.
    Cox DD; Papanastassiou AM; Oreper D; Andken BB; Dicarlo JJ
    J Neurophysiol; 2008 Nov; 100(5):2966-76. PubMed ID: 18815345
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A novel device for real-time measurement and manipulation of licking behavior in head-fixed mice.
    Williams B; Speed A; Haider B
    J Neurophysiol; 2018 Dec; 120(6):2975-2987. PubMed ID: 30256741
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Whole-cell patch-clamp recordings in freely moving animals.
    Lee AK; Epsztein J; Brecht M
    Methods Mol Biol; 2014; 1183():263-76. PubMed ID: 25023315
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dorsal spinocerebellar tract neuronal activity in the intact chronic cat.
    Soja PJ; Fragoso MC; Cairns BE; Oka JI
    J Neurosci Methods; 1995 Aug; 60(1-2):227-39. PubMed ID: 8544483
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A new, behaving, head restrained, eye movement-controlled feline model for chronic visual electrophysiological recordings.
    Nagypál T; Gombkötő P; Utassy G; Averkin RG; Benedek G; Nagy A
    J Neurosci Methods; 2014 Jan; 221():1-7. PubMed ID: 24056229
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Miniature stereo radio transmitter for simultaneous recording of multiple single-neuron signals from behaving owls.
    Nieder A
    J Neurosci Methods; 2000 Sep; 101(2):157-64. PubMed ID: 10996376
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chronic in vivo multi-circuit neurophysiological recordings in mice.
    Dzirasa K; Fuentes R; Kumar S; Potes JM; Nicolelis MA
    J Neurosci Methods; 2011 Jan; 195(1):36-46. PubMed ID: 21115042
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Technic for recording central neuron unit activity in the awake sheep].
    Catalin D
    Reprod Nutr Dev (1980); 1984; 24(3):297-305. PubMed ID: 6374801
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A miniaturized chronic microelectrode drive for awake behaving head restrained mice and rats.
    Haiss F; Butovas S; Schwarz C
    J Neurosci Methods; 2010 Mar; 187(1):67-72. PubMed ID: 20036690
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.