These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 19073599)
1. The human Cdc37.Hsp90 complex studied by heteronuclear NMR spectroscopy. Sreeramulu S; Jonker HR; Langer T; Richter C; Lancaster CR; Schwalbe H J Biol Chem; 2009 Feb; 284(6):3885-96. PubMed ID: 19073599 [TBL] [Abstract][Full Text] [Related]
2. Characterization of celastrol to inhibit hsp90 and cdc37 interaction. Zhang T; Li Y; Yu Y; Zou P; Jiang Y; Sun D J Biol Chem; 2009 Dec; 284(51):35381-9. PubMed ID: 19858214 [TBL] [Abstract][Full Text] [Related]
3. Hsp90·Cdc37 Complexes with Protein Kinases Form Cooperatively with Multiple Distinct Interaction Sites. Eckl JM; Scherr MJ; Freiburger L; Daake MA; Sattler M; Richter K J Biol Chem; 2015 Dec; 290(52):30843-54. PubMed ID: 26511315 [TBL] [Abstract][Full Text] [Related]
4. Cdc37 (cell division cycle 37) restricts Hsp90 (heat shock protein 90) motility by interaction with N-terminal and middle domain binding sites. Eckl JM; Rutz DA; Haslbeck V; Zierer BK; Reinstein J; Richter K J Biol Chem; 2013 May; 288(22):16032-42. PubMed ID: 23569206 [TBL] [Abstract][Full Text] [Related]
5. Structural characterization of the N-terminal kinase-interacting domain of an Hsp90-cochaperone Cdc37 by CD and solution NMR spectroscopy. Ihama F; Yamamoto M; Kojima C; Fujiwara T; Matsuzaki K; Miyata Y; Hoshino M Biochim Biophys Acta Proteins Proteom; 2019 Sep; 1867(9):813-820. PubMed ID: 31226489 [TBL] [Abstract][Full Text] [Related]
6. Domain-mediated dimerization of the Hsp90 cochaperones Harc and Cdc37. Roiniotis J; Masendycz P; Ho S; Scholz GM Biochemistry; 2005 May; 44(17):6662-9. PubMed ID: 15850399 [TBL] [Abstract][Full Text] [Related]
7. Functional Role and Hierarchy of the Intermolecular Interactions in Binding of Protein Kinase Clients to the Hsp90-Cdc37 Chaperone: Structure-Based Network Modeling of Allosteric Regulation. Stetz G; Verkhivker GM J Chem Inf Model; 2018 Feb; 58(2):405-421. PubMed ID: 29432007 [TBL] [Abstract][Full Text] [Related]
8. Structure of an Hsp90-Cdc37-Cdk4 complex. Vaughan CK; Gohlke U; Sobott F; Good VM; Ali MM; Prodromou C; Robinson CV; Saibil HR; Pearl LH Mol Cell; 2006 Sep; 23(5):697-707. PubMed ID: 16949366 [TBL] [Abstract][Full Text] [Related]
9. Split Renilla luciferase protein fragment-assisted complementation (SRL-PFAC) to characterize Hsp90-Cdc37 complex and identify critical residues in protein/protein interactions. Jiang Y; Bernard D; Yu Y; Xie Y; Zhang T; Li Y; Burnett JP; Fu X; Wang S; Sun D J Biol Chem; 2010 Jul; 285(27):21023-36. PubMed ID: 20413594 [TBL] [Abstract][Full Text] [Related]
10. Atomistic simulations and network-based modeling of the Hsp90-Cdc37 chaperone binding with Cdk4 client protein: A mechanism of chaperoning kinase clients by exploiting weak spots of intrinsically dynamic kinase domains. Czemeres J; Buse K; Verkhivker GM PLoS One; 2017; 12(12):e0190267. PubMed ID: 29267381 [TBL] [Abstract][Full Text] [Related]
11. Hsp90/Cdc37 chaperone/co-chaperone complex, a novel junction anticancer target elucidated by the mode of action of herbal drug Withaferin A. Grover A; Shandilya A; Agrawal V; Pratik P; Bhasme D; Bisaria VS; Sundar D BMC Bioinformatics; 2011 Feb; 12 Suppl 1(Suppl 1):S30. PubMed ID: 21342561 [TBL] [Abstract][Full Text] [Related]
12. Biochemical and structural studies of the interaction of Cdc37 with Hsp90. Zhang W; Hirshberg M; McLaughlin SH; Lazar GA; Grossmann JG; Nielsen PR; Sobott F; Robinson CV; Jackson SE; Laue ED J Mol Biol; 2004 Jul; 340(4):891-907. PubMed ID: 15223329 [TBL] [Abstract][Full Text] [Related]
13. Exploring Mechanisms of Communication Switching in the Hsp90-Cdc37 Regulatory Complexes with Client Kinases through Allosteric Coupling of Phosphorylation Sites: Perturbation-Based Modeling and Hierarchical Community Analysis of Residue Interaction Networks. Stetz G; Astl L; Verkhivker GM J Chem Theory Comput; 2020 Jul; 16(7):4706-4725. PubMed ID: 32492340 [TBL] [Abstract][Full Text] [Related]
14. Molecular Mechanism of Protein Kinase Recognition and Sorting by the Hsp90 Kinome-Specific Cochaperone Cdc37. Keramisanou D; Aboalroub A; Zhang Z; Liu W; Marshall D; Diviney A; Larsen RW; Landgraf R; Gelis I Mol Cell; 2016 Apr; 62(2):260-271. PubMed ID: 27105117 [TBL] [Abstract][Full Text] [Related]
15. Targeting CDC37: an alternative, kinase-directed strategy for disruption of oncogenic chaperoning. Smith JR; Workman P Cell Cycle; 2009 Feb; 8(3):362-72. PubMed ID: 19177013 [TBL] [Abstract][Full Text] [Related]
16. Cdc37 as a Co-chaperone to Hsp90. Prince TL; Lang BJ; Okusha Y; Eguchi T; Calderwood SK Subcell Biochem; 2023; 101():141-158. PubMed ID: 36520306 [TBL] [Abstract][Full Text] [Related]
17. Phosphorylated and unphosphorylated serine 13 of CDC37 stabilize distinct interactions between its client and HSP90 binding domains. Liu W; Landgraf R Biochemistry; 2015 Feb; 54(7):1493-504. PubMed ID: 25619116 [TBL] [Abstract][Full Text] [Related]
18. Cdc37-Hsp90 complexes are responsive to nucleotide-induced conformational changes and binding of further cofactors. Gaiser AM; Kretzschmar A; Richter K J Biol Chem; 2010 Dec; 285(52):40921-32. PubMed ID: 20880838 [TBL] [Abstract][Full Text] [Related]
19. The chaperones Hsp90 and Cdc37 mediate the maturation and stabilization of protein kinase C through a conserved PXXP motif in the C-terminal tail. Gould CM; Kannan N; Taylor SS; Newton AC J Biol Chem; 2009 Feb; 284(8):4921-35. PubMed ID: 19091746 [TBL] [Abstract][Full Text] [Related]
20. Definition of protein kinase sequence motifs that trigger high affinity binding of Hsp90 and Cdc37. Prince T; Matts RL J Biol Chem; 2004 Sep; 279(38):39975-81. PubMed ID: 15258137 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]