These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 19073599)
21. Specific regulation of noncanonical p38alpha activation by Hsp90-Cdc37 chaperone complex in cardiomyocyte. Ota A; Zhang J; Ping P; Han J; Wang Y Circ Res; 2010 Apr; 106(8):1404-12. PubMed ID: 20299663 [TBL] [Abstract][Full Text] [Related]
22. Atomic structure of Hsp90-Cdc37-Cdk4 reveals that Hsp90 traps and stabilizes an unfolded kinase. Verba KA; Wang RY; Arakawa A; Liu Y; Shirouzu M; Yokoyama S; Agard DA Science; 2016 Jun; 352(6293):1542-7. PubMed ID: 27339980 [TBL] [Abstract][Full Text] [Related]
23. Cdc37 goes beyond Hsp90 and kinases. MacLean M; Picard D Cell Stress Chaperones; 2003; 8(2):114-9. PubMed ID: 14627196 [TBL] [Abstract][Full Text] [Related]
24. Cdc37 as a co-chaperone to Hsp90. Calderwood SK Subcell Biochem; 2015; 78():103-12. PubMed ID: 25487018 [TBL] [Abstract][Full Text] [Related]
25. Differential maturation and chaperone dependence of the paralogous protein kinases DYRK1A and DYRK1B. Papenfuss M; Lützow S; Wilms G; Babendreyer A; Flaßhoff M; Kunick C; Becker W Sci Rep; 2022 Feb; 12(1):2393. PubMed ID: 35165364 [TBL] [Abstract][Full Text] [Related]
26. Phosphorylation of serine 13 is required for the proper function of the Hsp90 co-chaperone, Cdc37. Shao J; Prince T; Hartson SD; Matts RL J Biol Chem; 2003 Oct; 278(40):38117-20. PubMed ID: 12930845 [TBL] [Abstract][Full Text] [Related]
27. A chemical compound inhibiting the Aha1-Hsp90 chaperone complex. Stiegler SC; Rübbelke M; Korotkov VS; Weiwad M; John C; Fischer G; Sieber SA; Sattler M; Buchner J J Biol Chem; 2017 Oct; 292(41):17073-17083. PubMed ID: 28851842 [TBL] [Abstract][Full Text] [Related]
28. HSP-90/kinase complexes are stabilized by the large PPIase FKB-6. Sima S; Barkovits K; Marcus K; Schmauder L; Hacker SM; Hellwig N; Morgner N; Richter K Sci Rep; 2021 Jun; 11(1):12347. PubMed ID: 34117308 [TBL] [Abstract][Full Text] [Related]
29. Structural dynamics of RAF1-HSP90-CDC37 and HSP90 complexes reveal asymmetric client interactions and key structural elements. Finci LI; Chakrabarti M; Gulten G; Finney J; Grose C; Fox T; Yang R; Nissley DV; McCormick F; Esposito D; Balius TE; Simanshu DK Commun Biol; 2024 Mar; 7(1):260. PubMed ID: 38431713 [TBL] [Abstract][Full Text] [Related]
30. Targeting Hsp90-Cdc37: A Promising Therapeutic Strategy by Inhibiting Hsp90 Chaperone Function. Wang L; Li L; Gu K; Xu XL; Sun Y; You QD Curr Drug Targets; 2017; 18(13):1572-1585. PubMed ID: 27231111 [TBL] [Abstract][Full Text] [Related]
31. Identification of a conserved sequence motif that promotes Cdc37 and cyclin D1 binding to Cdk4. Zhao Q; Boschelli F; Caplan AJ; Arndt KT J Biol Chem; 2004 Mar; 279(13):12560-4. PubMed ID: 14701845 [TBL] [Abstract][Full Text] [Related]
32. 1H, 13C and 15N backbone resonance assignment of the Hsp90 binding domain of human Cdc37. Sreeramulu S; Kumar J; Richter C; Vogtherr M; Saxena K; Langer T; Schwalbe H J Biomol NMR; 2005 Jul; 32(3):262. PubMed ID: 16132836 [No Abstract] [Full Text] [Related]
33. Blocking the chaperone kinome pathway: mechanistic insights into a novel dual inhibition approach for supra-additive suppression of malignant tumors. Grover A; Shandilya A; Agrawal V; Pratik P; Bhasme D; Bisaria VS; Sundar D Biochem Biophys Res Commun; 2011 Jan; 404(1):498-503. PubMed ID: 21144839 [TBL] [Abstract][Full Text] [Related]
34. FW-04-806 inhibits proliferation and induces apoptosis in human breast cancer cells by binding to N-terminus of Hsp90 and disrupting Hsp90-Cdc37 complex formation. Huang W; Ye M; Zhang LR; Wu QD; Zhang M; Xu JH; Zheng W Mol Cancer; 2014 Jun; 13():150. PubMed ID: 24927996 [TBL] [Abstract][Full Text] [Related]
35. Differential Regulation of G1 CDK Complexes by the Hsp90-Cdc37 Chaperone System. Hallett ST; Pastok MW; Morgan RML; Wittner A; Blundell KLIM; Felletar I; Wedge SR; Prodromou C; Noble MEM; Pearl LH; Endicott JA Cell Rep; 2017 Oct; 21(5):1386-1398. PubMed ID: 29091774 [TBL] [Abstract][Full Text] [Related]
36. The Mechanism of Hsp90 regulation by the protein kinase-specific cochaperone p50(cdc37). Roe SM; Ali MM; Meyer P; Vaughan CK; Panaretou B; Piper PW; Prodromou C; Pearl LH Cell; 2004 Jan; 116(1):87-98. PubMed ID: 14718169 [TBL] [Abstract][Full Text] [Related]
37. p50(cdc37) binds directly to the catalytic domain of Raf as well as to a site on hsp90 that is topologically adjacent to the tetratricopeptide repeat binding site. Silverstein AM; Grammatikakis N; Cochran BH; Chinkers M; Pratt WB J Biol Chem; 1998 Aug; 273(32):20090-5. PubMed ID: 9685350 [TBL] [Abstract][Full Text] [Related]
38. Disease Variants of FGFR3 Reveal Molecular Basis for the Recognition and Additional Roles for Cdc37 in Hsp90 Chaperone System. Bunney TD; Inglis AJ; Sanfelice D; Farrell B; Kerr CJ; Thompson GS; Masson GR; Thiyagarajan N; Svergun DI; Williams RL; Breeze AL; Katan M Structure; 2018 Mar; 26(3):446-458.e8. PubMed ID: 29478821 [TBL] [Abstract][Full Text] [Related]
39. Expression and purification of recombinant NRL-Hsp90α and Cdc37-CRL proteins for in vitro Hsp90/Cdc37 inhibitors screening. He J; Niu X; Hu C; Zhang H; Guo Y; Ge Y; Wang G; Jiang Y Protein Expr Purif; 2013 Nov; 92(1):119-27. PubMed ID: 24056254 [TBL] [Abstract][Full Text] [Related]
40. Conformational dynamics of the molecular chaperone Hsp90 in complexes with a co-chaperone and anticancer drugs. Phillips JJ; Yao ZP; Zhang W; McLaughlin S; Laue ED; Robinson CV; Jackson SE J Mol Biol; 2007 Oct; 372(5):1189-203. PubMed ID: 17764690 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]