BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 19073603)

  • 1. Nuclear quantum tunneling in the light-activated enzyme protochlorophyllide oxidoreductase.
    Heyes DJ; Sakuma M; de Visser SP; Scrutton NS
    J Biol Chem; 2009 Feb; 284(6):3762-7. PubMed ID: 19073603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Excited-state charge separation in the photochemical mechanism of the light-driven enzyme protochlorophyllide oxidoreductase.
    Heyes DJ; Hardman SJ; Hedison TM; Hoeven R; Greetham GM; Towrie M; Scrutton NS
    Angew Chem Int Ed Engl; 2015 Jan; 54(5):1512-5. PubMed ID: 25488797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cryogenic and laser photoexcitation studies identify multiple roles for active site residues in the light-driven enzyme protochlorophyllide oxidoreductase.
    Menon BR; Waltho JP; Scrutton NS; Heyes DJ
    J Biol Chem; 2009 Jul; 284(27):18160-6. PubMed ID: 19439417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymology below 200 K: the kinetics and thermodynamics of the photochemistry catalyzed by protochlorophyllide oxidoreductase.
    Heyes DJ; Ruban AV; Wilks HM; Hunter CN
    Proc Natl Acad Sci U S A; 2002 Aug; 99(17):11145-50. PubMed ID: 12177453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanistic implications of the ternary complex structural models for the photoenzyme protochlorophyllide oxidoreductase.
    Taylor A; Zhang S; Johannissen LO; Sakuma M; Phillips RS; Green AP; Hay S; Heyes DJ; Scrutton NS
    FEBS J; 2024 Apr; 291(7):1404-1421. PubMed ID: 38060334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Effect of Two Amino acid Residue Substitutions via RNA Editing on Dark-operative Protochlorophyllide Oxidoreductase in the Black Pine Chloroplasts.
    Yamamoto H; Kusumi J; Yamakawa H; Fujita Y
    Sci Rep; 2017 May; 7(1):2377. PubMed ID: 28539650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chlorophylls of the c family: absolute configuration and inhibition of NADPH:protochlorophyllide oxidoreductase.
    Helfrich M; Bommer B; Oster U; Klement H; Mayer K; Larkum AW; Rüdiger W
    Biochim Biophys Acta; 2003 Aug; 1605(1-3):97-103. PubMed ID: 12907304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Consensus model of a cyanobacterial light-dependent protochlorophyllide oxidoreductase in its pigment-free apo-form and photoactive ternary complex.
    Schneidewind J; Krause F; Bocola M; Stadler AM; Davari MD; Schwaneberg U; Jaeger KE; Krauss U
    Commun Biol; 2019; 2():351. PubMed ID: 31583285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorination of a conserved tyrosine in POR offers new clues for proton transfer.
    Dong CS; Liu L
    FEBS J; 2024 Apr; 291(7):1400-1403. PubMed ID: 38297957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elucidation of ligand binding and dimerization of NADPH:protochlorophyllide (Pchlide) oxidoreductase from pea (Pisum sativum L.) by structural analysis and simulations.
    Sameer H; Victor G; Katalin S; Henrik A
    Proteins; 2021 Oct; 89(10):1300-1314. PubMed ID: 34021929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of the nitrogenase-like dark operative protochlorophyllide oxidoreductase catalytic complex (ChlN/ChlB)2.
    Bröcker MJ; Schomburg S; Heinz DW; Jahn D; Schubert WD; Moser J
    J Biol Chem; 2010 Aug; 285(35):27336-27345. PubMed ID: 20558746
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence lifetimes of protochlorophyllide in plants with different proportions of short-wavelength and long-wavelength protochlorophyllide spectral forms.
    Myśliwa-Kurdziel B; Amirjani MR; Strzałka K; Sundqvist C
    Photochem Photobiol; 2003 Aug; 78(2):205-12. PubMed ID: 12945590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complex Evolution of Light-Dependent Protochlorophyllide Oxidoreductases in Aerobic Anoxygenic Phototrophs: Origin, Phylogeny, and Function.
    Chernomor O; Peters L; Schneidewind J; Loeschcke A; Knieps-Grünhagen E; Schmitz F; von Lieres E; Kutta RJ; Svensson V; Jaeger KE; Drepper T; von Haeseler A; Krauss U
    Mol Biol Evol; 2021 Mar; 38(3):819-837. PubMed ID: 32931580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nuclear Quantum Effects in Proton or Hydrogen Transfer.
    Waluk J
    J Phys Chem Lett; 2024 Jan; 15(2):598-607. PubMed ID: 38198616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Update 1 of: Tunneling and dynamics in enzymatic hydride transfer.
    Nagel ZD; Klinman JP
    Chem Rev; 2010 Dec; 110(12):PR41-67. PubMed ID: 21141912
    [No Abstract]   [Full Text] [Related]  

  • 16. Elucidating substrate binding in the light-dependent protochlorophyllide oxidoreductase.
    Pesara P; Szafran K; Nguyen HC; Sirohiwal A; Pantazis DA; Gabruk M
    Chem Sci; 2024 May; 15(20):7767-7780. PubMed ID: 38784751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How Is Substrate Halogenation Triggered by the Vanadium Haloperoxidase from
    Gérard EF; Mokkawes T; Johannissen LO; Warwicker J; Spiess RR; Blanford CF; Hay S; Heyes DJ; de Visser SP
    ACS Catal; 2023 Jun; 13(12):8247-8261. PubMed ID: 37342830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Alternative Proposal for the Reaction Mechanism of Light-Dependent Protochlorophyllide Oxidoreductase.
    Silva PJ; Cheng Q
    ACS Catal; 2022 Feb; 12(4):2589-2605. PubMed ID: 36568346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How Photoactivation Triggers Protochlorophyllide Reduction: Computational Evidence of a Stepwise Hydride Transfer during Chlorophyll Biosynthesis.
    Johannissen LO; Taylor A; Hardman SJO; Heyes DJ; Scrutton NS; Hay S
    ACS Catal; 2022 Apr; 12(7):4141-4148. PubMed ID: 35574213
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.