These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 19073697)

  • 1. Identification of candidate disease genes by integrating Gene Ontologies and protein-interaction networks: case study of primary immunodeficiencies.
    Ortutay C; Vihinen M
    Nucleic Acids Res; 2009 Feb; 37(2):622-8. PubMed ID: 19073697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of candidate primary immunodeficiency disease genes using a support vector machine learning approach.
    Keerthikumar S; Bhadra S; Kandasamy K; Raju R; Ramachandra YL; Bhattacharyya C; Imai K; Ohara O; Mohan S; Pandey A
    DNA Res; 2009 Dec; 16(6):345-51. PubMed ID: 19801557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of core T cell network based on immunome interactome.
    Teku GN; Ortutay C; Vihinen M
    BMC Syst Biol; 2014 Feb; 8():17. PubMed ID: 24528953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A relation based measure of semantic similarity for Gene Ontology annotations.
    Sheehan B; Quigley A; Gaudin B; Dobson S
    BMC Bioinformatics; 2008 Nov; 9():468. PubMed ID: 18983678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global risk transformative prioritization for prostate cancer candidate genes in molecular networks.
    Chen L; Tai J; Zhang L; Shang Y; Li X; Qu X; Li W; Miao Z; Jia X; Wang H; Li W; He W
    Mol Biosyst; 2011 Sep; 7(9):2547-53. PubMed ID: 21735017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prioritization of orphan disease-causing genes using topological feature and GO similarity between proteins in interaction networks.
    Li M; Li Q; Ganegoda GU; Wang J; Wu F; Pan Y
    Sci China Life Sci; 2014 Nov; 57(11):1064-71. PubMed ID: 25326068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting diabetes mellitus genes via protein-protein interaction and protein subcellular localization information.
    Tang X; Hu X; Yang X; Fan Y; Li Y; Hu W; Liao Y; Zheng MC; Peng W; Gao L
    BMC Genomics; 2016 Aug; 17 Suppl 4(Suppl 4):433. PubMed ID: 27535125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrating network, sequence and functional features using machine learning approaches towards identification of novel Alzheimer genes.
    Jamal S; Goyal S; Shanker A; Grover A
    BMC Genomics; 2016 Oct; 17(1):807. PubMed ID: 27756223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene prioritization in Type 2 Diabetes using domain interactions and network analysis.
    Sharma A; Chavali S; Tabassum R; Tandon N; Bharadwaj D
    BMC Genomics; 2010 Feb; 11():84. PubMed ID: 20122255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DIGNiFI: Discovering causative genes for orphan diseases using protein-protein interaction networks.
    Liu X; Yang Z; Lin H; Simmons M; Lu Z
    BMC Syst Biol; 2017 Mar; 11(Suppl 3):23. PubMed ID: 28361678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clinical efficacy of a next-generation sequencing gene panel for primary immunodeficiency diagnostics.
    Rae W; Ward D; Mattocks C; Pengelly RJ; Eren E; Patel SV; Faust SN; Hunt D; Williams AP
    Clin Genet; 2018 Mar; 93(3):647-655. PubMed ID: 29077208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BMRF-MI: integrative identification of protein interaction network by modeling the gene dependency.
    Shi X; Wang X; Shajahan A; Hilakivi-Clarke L; Clarke R; Xuan J
    BMC Genomics; 2015; 16 Suppl 7(Suppl 7):S10. PubMed ID: 26099273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Network-based association analysis to infer new disease-gene relationships using large-scale protein interactions.
    Suratanee A; Plaimas K
    PLoS One; 2018; 13(6):e0199435. PubMed ID: 29949603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. InfAcrOnt: calculating cross-ontology term similarities using information flow by a random walk.
    Cheng L; Jiang Y; Ju H; Sun J; Peng J; Zhou M; Hu Y
    BMC Genomics; 2018 Jan; 19(Suppl 1):919. PubMed ID: 29363423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integration of anatomy ontology data with protein-protein interaction networks improves the candidate gene prediction accuracy for anatomical entities.
    Fernando PC; Mabee PM; Zeng E
    BMC Bioinformatics; 2020 Oct; 21(1):442. PubMed ID: 33028186
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Next Generation Sequencing Data Analysis in Primary Immunodeficiency Disorders - Future Directions.
    Fang M; Abolhassani H; Lim CK; Zhang J; Hammarström L
    J Clin Immunol; 2016 May; 36 Suppl 1():68-75. PubMed ID: 26993986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disease candidate gene identification and prioritization using protein interaction networks.
    Chen J; Aronow BJ; Jegga AG
    BMC Bioinformatics; 2009 Feb; 10():73. PubMed ID: 19245720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analyzing the pathways enriched in genes associated with nicotine dependence in the context of human protein-protein interaction network.
    Hu Y; Fang Z; Yang Y; Fan T; Wang J
    J Biomol Struct Dyn; 2019 Mar; 37(5):1177-1188. PubMed ID: 29546796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrative analysis of human protein, function and disease networks.
    Liu W; Wu A; Pellegrini M; Wang X
    Sci Rep; 2015 Sep; 5():14344. PubMed ID: 26399914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prioritization of candidate disease genes by enlarging the seed set and fusing information of the network topology and gene expression.
    Zhang SW; Shao DD; Zhang SY; Wang YB
    Mol Biosyst; 2014 Jun; 10(6):1400-8. PubMed ID: 24695957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.