These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 19073697)

  • 21. A network-based machine-learning framework to identify both functional modules and disease genes.
    Yang K; Lu K; Wu Y; Yu J; Liu B; Zhao Y; Chen J; Zhou X
    Hum Genet; 2021 Jun; 140(6):897-913. PubMed ID: 33409574
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exome sequencing analysis reveals variants in primary immunodeficiency genes in patients with very early onset inflammatory bowel disease.
    Kelsen JR; Dawany N; Moran CJ; Petersen BS; Sarmady M; Sasson A; Pauly-Hubbard H; Martinez A; Maurer K; Soong J; Rappaport E; Franke A; Keller A; Winter HS; Mamula P; Piccoli D; Artis D; Sonnenberg GF; Daly M; Sullivan KE; Baldassano RN; Devoto M
    Gastroenterology; 2015 Nov; 149(6):1415-24. PubMed ID: 26193622
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparative analysis of protein interactome networks prioritizes candidate genes with cancer signatures.
    Li Y; Sahni N; Yi S
    Oncotarget; 2016 Nov; 7(48):78841-78849. PubMed ID: 27791983
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Novel Comprehensive Bioinformatics Approaches to Determine the Molecular Genetic Susceptibility Profile of Moderate and Severe Asthma.
    Zayed H
    Int J Mol Sci; 2020 Jun; 21(11):. PubMed ID: 32512817
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Constructing an integrated gene similarity network for the identification of disease genes.
    Tian Z; Guo M; Wang C; Xing L; Wang L; Zhang Y
    J Biomed Semantics; 2017 Sep; 8(Suppl 1):32. PubMed ID: 29297379
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Information theory applied to the sparse gene ontology annotation network to predict novel gene function.
    Tao Y; Sam L; Li J; Friedman C; Lussier YA
    Bioinformatics; 2007 Jul; 23(13):i529-38. PubMed ID: 17646340
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Parametric Targetability Evaluation Approach for Vitiligo Proteome Extracted through Integration of Gene Ontologies and Protein Interaction Topologies.
    Malhotra AG; Singh S; Jha M; Pandey KM
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(6):1830-1842. PubMed ID: 29994537
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of protein complexes from multi-relationship protein interaction networks.
    Li X; Wang J; Zhao B; Wu FX; Pan Y
    Hum Genomics; 2016 Jul; 10 Suppl 2(Suppl 2):17. PubMed ID: 27461193
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ontology-Based Prediction and Prioritization of Gene Functional Annotations.
    Chicco D; Masseroli M
    IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(2):248-60. PubMed ID: 27045825
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The use of Gene Ontology terms for predicting highly-connected 'hub' nodes in protein-protein interaction networks.
    Hsing M; Byler KG; Cherkasov A
    BMC Syst Biol; 2008 Sep; 2():80. PubMed ID: 18796161
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of New Candidate Genes and Chemicals Related to Esophageal Cancer Using a Hybrid Interaction Network of Chemicals and Proteins.
    Gao YF; Yuan F; Liu J; Li LP; He YC; Gao RJ; Cai YD; Jiang Y
    PLoS One; 2015; 10(6):e0129474. PubMed ID: 26058041
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A New Method for Identifying Essential Proteins by Measuring Co-Expression and Functional Similarity.
    Zhang W; Xu J; Li X; Zou X
    IEEE Trans Nanobioscience; 2016 Dec; 15(8):939-945. PubMed ID: 27834650
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gene multifunctionality scoring using gene ontology.
    Al-Mubaid H
    J Bioinform Comput Biol; 2018 Oct; 16(5):1840018. PubMed ID: 30419786
    [TBL] [Abstract][Full Text] [Related]  

  • 34. MetaGO: Predicting Gene Ontology of Non-homologous Proteins Through Low-Resolution Protein Structure Prediction and Protein-Protein Network Mapping.
    Zhang C; Zheng W; Freddolino PL; Zhang Y
    J Mol Biol; 2018 Jul; 430(15):2256-2265. PubMed ID: 29534977
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of T1D susceptibility genes within the MHC region by combining protein interaction networks and SNP genotyping data.
    Brorsson C; Hansen NT; Lage K; Bergholdt R; Brunak S; Pociot F;
    Diabetes Obes Metab; 2009 Feb; 11 Suppl 1(Suppl 1):60-6. PubMed ID: 19143816
    [TBL] [Abstract][Full Text] [Related]  

  • 36. GPEC: a Cytoscape plug-in for random walk-based gene prioritization and biomedical evidence collection.
    Le DH; Kwon YK
    Comput Biol Chem; 2012 Apr; 37():17-23. PubMed ID: 22430954
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of key genes and pathways in regulating immune‑induced diseases of dendritic cells by bioinformatic analysis.
    Zheng Y; Zheng X; Li S; Zhang H; Liu M; Yang Q; Zhang M; Sun Y; Wu J; Yu B
    Mol Med Rep; 2018 Jun; 17(6):7585-7594. PubMed ID: 29620200
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The prediction of candidate genes for cervix related cancer through gene ontology and graph theoretical approach.
    Hindumathi V; Kranthi T; Rao SB; Manimaran P
    Mol Biosyst; 2014 Jun; 10(6):1450-60. PubMed ID: 24647578
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Network topology measures for identifying disease-gene association in breast cancer.
    Ramadan E; Alinsaif S; Hassan MR
    BMC Bioinformatics; 2016 Jul; 17 Suppl 7(Suppl 7):274. PubMed ID: 27454166
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recent advances in primary immunodeficiencies: identification of novel genetic defects and unanticipated phenotypes.
    Pessach I; Walter J; Notarangelo LD
    Pediatr Res; 2009 May; 65(5 Pt 2):3R-12R. PubMed ID: 19190530
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.