These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 1907372)

  • 1. Mutations in 16S rRNA that affect UGA (stop codon)-directed translation termination.
    Göringer HU; Hijazi KA; Murgola EJ; Dahlberg AE
    Proc Natl Acad Sci U S A; 1991 Aug; 88(15):6603-7. PubMed ID: 1907372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The involvement of base 1054 in 16S rRNA for UGA stop codon dependent translational termination.
    Hänfler A; Kleuvers B; Göringer HU
    Nucleic Acids Res; 1990 Oct; 18(19):5625-32. PubMed ID: 2216755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A rRNA-mRNA base pairing model for UGA-dependent termination.
    Prescott CD; Kleuvers B; Göringer HU
    Biochimie; 1991; 73(7-8):1121-9. PubMed ID: 1742356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. UGA suppression by a mutant RNA of the large ribosomal subunit.
    Jemiolo DK; Pagel FT; Murgola EJ
    Proc Natl Acad Sci U S A; 1995 Dec; 92(26):12309-13. PubMed ID: 8618891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ribosomes containing the C1054-deletion mutation in E. coli 16S rRNA act as suppressors at all three nonsense codons.
    Prescott C; Krabben L; Nierhaus K
    Nucleic Acids Res; 1991 Oct; 19(19):5281-3. PubMed ID: 1923812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutations in helix 34 of Escherichia coli 16 S ribosomal RNA have multiple effects on ribosome function and synthesis.
    Moine H; Dahlberg AE
    J Mol Biol; 1994 Oct; 243(3):402-12. PubMed ID: 7966269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two regions of the Escherichia coli 16S ribosomal RNA are important for decoding stop signals in polypeptide chain termination.
    Brown CM; McCaughan KK; Tate WP
    Nucleic Acids Res; 1993 May; 21(9):2109-15. PubMed ID: 8502551
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Features of the formate dehydrogenase mRNA necessary for decoding of the UGA codon as selenocysteine.
    Zinoni F; Heider J; Böck A
    Proc Natl Acad Sci U S A; 1990 Jun; 87(12):4660-4. PubMed ID: 2141170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of ribosome release in regulation of tna operon expression in Escherichia coli.
    Konan KV; Yanofsky C
    J Bacteriol; 1999 Mar; 181(5):1530-6. PubMed ID: 10049385
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Frameshifting in the synthesis of Escherichia coli polypeptide chain release factor two on eukaryotic ribosomes.
    Williams JM; Donly BC; Brown CM; Adamski FM; Trotman CN; Tate WP
    Eur J Biochem; 1989 Dec; 186(3):515-21. PubMed ID: 2691247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decoding fidelity at the ribosomal A and P sites: influence of mutations in three different regions of the decoding domain in 16S rRNA.
    O'Connor M; Thomas CL; Zimmermann RA; Dahlberg AE
    Nucleic Acids Res; 1997 Mar; 25(6):1185-93. PubMed ID: 9092628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CCC.UGA: a new site of ribosomal frameshifting in Escherichia coli.
    de Smit MH; van Duin J; van Knippenberg PH; van Eijk HG
    Gene; 1994 May; 143(1):43-7. PubMed ID: 8200537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A single mutation in 16S rRNA that affects mRNA binding and translation-termination.
    Prescott CD; Göringer HU
    Nucleic Acids Res; 1990 Sep; 18(18):5381-6. PubMed ID: 2216710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of codon context on UGA suppression and readthrough.
    Kopelowitz J; Hampe C; Goldman R; Reches M; Engelberg-Kulka H
    J Mol Biol; 1992 May; 225(2):261-9. PubMed ID: 1375653
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutations at three sites in the Escherichia coli 23S ribosomal RNA binding region for protein L11 cause UGA-specific suppression and conditional lethality.
    Murgola EJ; Xu W; Arkov AL
    Nucleic Acids Symp Ser; 1995; (33):70-2. PubMed ID: 8643403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coding from a distance: dissection of the mRNA determinants required for the incorporation of selenocysteine into protein.
    Heider J; Baron C; Böck A
    EMBO J; 1992 Oct; 11(10):3759-66. PubMed ID: 1396569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ribosomal intersubunit bridge B2a is involved in factor-dependent translation initiation and translational processivity.
    Kipper K; Hetényi C; Sild S; Remme J; Liiv A
    J Mol Biol; 2009 Jan; 385(2):405-22. PubMed ID: 19007789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutations in RNAs of both ribosomal subunits cause defects in translation termination.
    Arkov AL; Freistroffer DV; Ehrenberg M; Murgola EJ
    EMBO J; 1998 Mar; 17(5):1507-14. PubMed ID: 9482747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of the Escherichia coli fdhF mRNA hairpin promoting selenocysteine incorporation with the ribosome.
    Hüttenhofer A; Heider J; Böck A
    Nucleic Acids Res; 1996 Oct; 24(20):3903-10. PubMed ID: 8918790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent advances in peptide chain termination.
    Craigen WJ; Lee CC; Caskey CT
    Mol Microbiol; 1990 Jun; 4(6):861-5. PubMed ID: 2215213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.