These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 19073802)

  • 1. Parsing pain perception between nociceptive representation and magnitude estimation.
    Baliki MN; Geha PY; Apkarian AV
    J Neurophysiol; 2009 Feb; 101(2):875-87. PubMed ID: 19073802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of simultaneous ratings on cortical BOLD effects during painful and non-painful stimulation.
    Schoedel AL; Zimmermann K; Handwerker HO; Forster C
    Pain; 2008 Mar; 135(1-2):131-41. PubMed ID: 17611034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cortical processing of visceral and somatic stimulation: differentiating pain intensity from unpleasantness.
    Dunckley P; Wise RG; Aziz Q; Painter D; Brooks J; Tracey I; Chang L
    Neuroscience; 2005; 133(2):533-42. PubMed ID: 15896917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-resolution functional magnetic resonance imaging mapping of noxious heat and tactile activations along the central sulcus in New World monkeys.
    Chen LM; Dillenburger BC; Wang F; Friedman RM; Avison MJ
    Pain; 2011 Mar; 152(3):522-532. PubMed ID: 21177033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Subjective Experience of Pain: An FMRI Study of Percept-Related Models and Functional Connectivity.
    Wilcox CE; Mayer AR; Teshiba TM; Ling J; Smith BW; Wilcox GL; Mullins PG
    Pain Med; 2015 Nov; 16(11):2121-33. PubMed ID: 25989475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cortical responses to thermal pain depend on stimulus size: a functional MRI study.
    Apkarian AV; Gelnar PA; Krauss BR; Szeverenyi NM
    J Neurophysiol; 2000 May; 83(5):3113-22. PubMed ID: 10805705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cerebral processing of pain in school-aged children with neonatal nociceptive input: an exploratory fMRI study.
    Hohmeister J; Kroll A; Wollgarten-Hadamek I; Zohsel K; Demirakça S; Flor H; Hermann C
    Pain; 2010 Aug; 150(2):257-267. PubMed ID: 20471751
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differentiating cortical areas related to pain perception from stimulus identification: temporal analysis of fMRI activity.
    Apkarian AV; Darbar A; Krauss BR; Gelnar PA; Szeverenyi NM
    J Neurophysiol; 1999 Jun; 81(6):2956-63. PubMed ID: 10368412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Virtual needle pain stimuli activates cortical representation of emotions in normal volunteers.
    Ushida T; Ikemoto T; Tanaka S; Shinozaki J; Taniguchi S; Murata Y; McLaughlin M; Arai YC; Tamura Y
    Neurosci Lett; 2008 Jul; 439(1):7-12. PubMed ID: 18502045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brain mechanisms supporting the modulation of pain by mindfulness meditation.
    Zeidan F; Martucci KT; Kraft RA; Gordon NS; McHaffie JG; Coghill RC
    J Neurosci; 2011 Apr; 31(14):5540-8. PubMed ID: 21471390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple somatotopic representations of heat and mechanical pain in the operculo-insular cortex: a high-resolution fMRI study.
    Baumgärtner U; Iannetti GD; Zambreanu L; Stoeter P; Treede RD; Tracey I
    J Neurophysiol; 2010 Nov; 104(5):2863-72. PubMed ID: 20739597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Central mechanisms of pain perception.
    Shibasaki H
    Suppl Clin Neurophysiol; 2004; 57():39-49. PubMed ID: 16106604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The contribution of the putamen to sensory aspects of pain: insights from structural connectivity and brain lesions.
    Starr CJ; Sawaki L; Wittenberg GF; Burdette JH; Oshiro Y; Quevedo AS; McHaffie JG; Coghill RC
    Brain; 2011 Jul; 134(Pt 7):1987-2004. PubMed ID: 21616963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mood influences supraspinal pain processing separately from attention.
    Villemure C; Bushnell MC
    J Neurosci; 2009 Jan; 29(3):705-15. PubMed ID: 19158297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of aging on the cerebral processing of thermal pain in the human brain.
    Tseng MT; Chiang MC; Yazhuo K; Chao CC; Tseng WI; Hsieh ST
    Pain; 2013 Oct; 154(10):2120-2129. PubMed ID: 23811039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Different Brain Circuitries Mediating Controllable and Uncontrollable Pain.
    Bräscher AK; Becker S; Hoeppli ME; Schweinhardt P
    J Neurosci; 2016 May; 36(18):5013-25. PubMed ID: 27147654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential coding of hyperalgesia in the human brain: a functional MRI study.
    Maihöfner C; Handwerker HO
    Neuroimage; 2005 Dec; 28(4):996-1006. PubMed ID: 16112876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Roles of the insular cortex in the modulation of pain: insights from brain lesions.
    Starr CJ; Sawaki L; Wittenberg GF; Burdette JH; Oshiro Y; Quevedo AS; Coghill RC
    J Neurosci; 2009 Mar; 29(9):2684-94. PubMed ID: 19261863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temporal changes in cortical activation during distraction from pain: a comparative LORETA study with conditioned pain modulation.
    Moont R; Crispel Y; Lev R; Pud D; Yarnitsky D
    Brain Res; 2012 Jan; 1435():105-17. PubMed ID: 22192409
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nocebo context modulates long-term habituation to heat pain and influences functional connectivity of the operculum.
    Ellerbrock I; Wiehler A; Arndt M; May A
    Pain; 2015 Nov; 156(11):2222-2233. PubMed ID: 26181304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.