These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 19074438)

  • 1. GroEL Recognizes an Amphipathic Helix and Binds to the Hydrophobic Side.
    Li Y; Gao X; Chen L
    J Biol Chem; 2009 Feb; 284(7):4324-31. PubMed ID: 19074438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Factors governing the substrate recognition by GroEL chaperone: a sequence correlation approach.
    Chaudhuri TK; Gupta P
    Cell Stress Chaperones; 2005; 10(1):24-36. PubMed ID: 15832945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of substrate recognition by the chaperonin GroEL.
    Houry WA
    Biochem Cell Biol; 2001; 79(5):569-77. PubMed ID: 11716298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gly192 at hinge 2 site in the chaperonin GroEL plays a pivotal role in the dynamic apical domain movement that leads to GroES binding and efficient encapsulation of substrate proteins.
    Machida K; Fujiwara R; Tanaka T; Sakane I; Hongo K; Mizobata T; Kawata Y
    Biochim Biophys Acta; 2009 Sep; 1794(9):1344-54. PubMed ID: 19130907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ATP-triggered conformational changes delineate substrate-binding and -folding mechanics of the GroEL chaperonin.
    Clare DK; Vasishtan D; Stagg S; Quispe J; Farr GW; Topf M; Horwich AL; Saibil HR
    Cell; 2012 Mar; 149(1):113-23. PubMed ID: 22445172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Domain motions in GroEL upon binding of an oligopeptide.
    Wang J; Chen L
    J Mol Biol; 2003 Nov; 334(3):489-99. PubMed ID: 14623189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Folding of maltose binding protein outside of and in GroEL.
    Ye X; Mayne L; Kan ZY; Englander SW
    Proc Natl Acad Sci U S A; 2018 Jan; 115(3):519-524. PubMed ID: 29295923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Revisiting the GroEL-GroES reaction cycle via the symmetric intermediate implied by novel aspects of the GroEL(D398A) mutant.
    Koike-Takeshita A; Yoshida M; Taguchi H
    J Biol Chem; 2008 Aug; 283(35):23774-81. PubMed ID: 18567584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GroEL recognises sequential and non-sequential linear structural motifs compatible with extended beta-strands and alpha-helices.
    Chatellier J; Buckle AM; Fersht AR
    J Mol Biol; 1999 Sep; 292(1):163-72. PubMed ID: 10493865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leu309 plays a critical role in the encapsulation of substrate protein into the internal cavity of GroEL.
    Koike-Takeshita A; Shimamura T; Yokoyama K; Yoshida M; Taguchi H
    J Biol Chem; 2006 Jan; 281(2):962-7. PubMed ID: 16239229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NMR analysis of the binding of a rhodanese peptide to a minichaperone in solution.
    Kobayashi N; Freund SM; Chatellier J; Zahn R; Fersht AR
    J Mol Biol; 1999 Sep; 292(1):181-90. PubMed ID: 10493867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The chaperonin GroEL binds a polypeptide in an alpha-helical conformation.
    Landry SJ; Gierasch LM
    Biochemistry; 1991 Jul; 30(30):7359-62. PubMed ID: 1677268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A thermophilic mini-chaperonin contains a conserved polypeptide-binding surface: combined crystallographic and NMR studies of the GroEL apical domain with implications for substrate interactions.
    Hua Q; Dementieva IS; Walsh MA; Hallenga K; Weiss MA; Joachimiak A
    J Mol Biol; 2001 Feb; 306(3):513-25. PubMed ID: 11178910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The crystal structure of a GroEL/peptide complex: plasticity as a basis for substrate diversity.
    Chen L; Sigler PB
    Cell; 1999 Dec; 99(7):757-68. PubMed ID: 10619429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of in vivo substrates of the chaperonin GroEL.
    Houry WA; Frishman D; Eckerskorn C; Lottspeich F; Hartl FU
    Nature; 1999 Nov; 402(6758):147-54. PubMed ID: 10647006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing the transient dark state of substrate binding to GroEL by relaxation-based solution NMR.
    Libich DS; Fawzi NL; Ying J; Clore GM
    Proc Natl Acad Sci U S A; 2013 Jul; 110(28):11361-6. PubMed ID: 23798407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A dynamic model of long-range conformational adaptations triggered by nucleotide binding in GroEL-GroES.
    Skjaerven L; Muga A; Reuter N; Martinez A
    Proteins; 2012 Oct; 80(10):2333-46. PubMed ID: 22576372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Football- and bullet-shaped GroEL-GroES complexes coexist during the reaction cycle.
    Sameshima T; Ueno T; Iizuka R; Ishii N; Terada N; Okabe K; Funatsu T
    J Biol Chem; 2008 Aug; 283(35):23765-73. PubMed ID: 18567585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural plasticity and noncovalent substrate binding in the GroEL apical domain. A study using electrospay ionization mass spectrometry and fluorescence binding studies.
    Ashcroft AE; Brinker A; Coyle JE; Weber F; Kaiser M; Moroder L; Parsons MR; Jager J; Hartl UF; Hayer-Hartl M; Radford SE
    J Biol Chem; 2002 Sep; 277(36):33115-26. PubMed ID: 12065585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NMR characterization of the interaction of GroEL with amyloid β as a model ligand.
    Yagi-Utsumi M; Kunihara T; Nakamura T; Uekusa Y; Makabe K; Kuwajima K; Kato K
    FEBS Lett; 2013 Jun; 587(11):1605-9. PubMed ID: 23603391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.