BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 19074575)

  • 1. Contribution of glycosaminoglycans to viscoelastic tensile behavior of human ligament.
    Lujan TJ; Underwood CJ; Jacobs NT; Weiss JA
    J Appl Physiol (1985); 2009 Feb; 106(2):423-31. PubMed ID: 19074575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of sulfated glycosaminoglycan digestion on the transverse permeability of medial collateral ligament.
    Henninger HB; Underwood CJ; Ateshian GA; Weiss JA
    J Biomech; 2010 Sep; 43(13):2567-73. PubMed ID: 20627251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The regional contribution of glycosaminoglycans to temporomandibular joint disc compressive properties.
    Willard VP; Kalpakci KN; Reimer AJ; Athanasiou KA
    J Biomech Eng; 2012 Jan; 134(1):011011. PubMed ID: 22482666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of glycosaminoglycans to the microstructural integrity of fibrillar and fiber crimps in tendons and ligaments.
    Franchi M; De Pasquale V; Martini D; Quaranta M; Macciocca M; Dionisi A; Ottani V
    ScientificWorldJournal; 2010 Oct; 10():1932-40. PubMed ID: 20890582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of dermatan sulfate glycosaminoglycans on the quasi-static material properties of the human medial collateral ligament.
    Lujan TJ; Underwood CJ; Henninger HB; Thompson BM; Weiss JA
    J Orthop Res; 2007 Jul; 25(7):894-903. PubMed ID: 17343278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence against proteoglycan mediated collagen fibril load transmission and dynamic viscoelasticity in tendon.
    Fessel G; Snedeker JG
    Matrix Biol; 2009 Oct; 28(8):503-10. PubMed ID: 19698786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterisation of native and decellularised porcine tendon under tension and compression: A closer look at glycosaminoglycan contribution to tendon mechanics.
    Solis-Cordova J; Edwards JH; Fermor HL; Riches P; Brockett CL; Herbert A
    J Mech Behav Biomed Mater; 2023 Mar; 139():105671. PubMed ID: 36682172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tensile Viscoelastic Properties of the Sclera after Glycosaminoglycan Depletion.
    Hatami-Marbini H; Pachenari M
    Curr Eye Res; 2021 Sep; 46(9):1299-1308. PubMed ID: 34325593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Viscoelastic properties of the human medial collateral ligament under longitudinal, transverse and shear loading.
    Bonifasi-Lista C; Lake SP; Small MS; Weiss JA
    J Orthop Res; 2005 Jan; 23(1):67-76. PubMed ID: 15607877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The contribution of sGAGs to stress-controlled tensile response of posterior porcine sclera.
    Hatami-Marbini H; Pachenari M
    PLoS One; 2020; 15(2):e0227856. PubMed ID: 32084141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tensile force transmission in human patellar tendon fascicles is not mediated by glycosaminoglycans.
    Svensson RB; Hassenkam T; Hansen P; Kjaer M; Magnusson SP
    Connect Tissue Res; 2011 Oct; 52(5):415-21. PubMed ID: 21453063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of glycosaminoglycan degradation on the mechanical behavior of the posterior porcine sclera.
    Murienne BJ; Jefferys JL; Quigley HA; Nguyen TD
    Acta Biomater; 2015 Jan; 12():195-206. PubMed ID: 25448352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regionally variant collagen alignment correlates with viscoelastic properties of the disc of the human temporomandibular joint.
    Gutman S; Kim D; Tarafder S; Velez S; Jeong J; Lee CH
    Arch Oral Biol; 2018 Feb; 86():1-6. PubMed ID: 29128675
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regional variation in the mechanical role of knee meniscus glycosaminoglycans.
    Sanchez-Adams J; Willard VP; Athanasiou KA
    J Appl Physiol (1985); 2011 Dec; 111(6):1590-6. PubMed ID: 21903884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiscale Mechanical Evaluation of Human Supraspinatus Tendon Under Shear Loading After Glycosaminoglycan Reduction.
    Fang F; Lake SP
    J Biomech Eng; 2017 Jul; 139(7):0710131-8. PubMed ID: 28462418
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elastin governs the mechanical response of medial collateral ligament under shear and transverse tensile loading.
    Henninger HB; Valdez WR; Scott SA; Weiss JA
    Acta Biomater; 2015 Oct; 25():304-12. PubMed ID: 26162584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Material characterization of human medial collateral ligament.
    Quapp KM; Weiss JA
    J Biomech Eng; 1998 Dec; 120(6):757-63. PubMed ID: 10412460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of nucleus pulposus crosslinking and glycosaminoglycan degradation on disc mechanical function.
    Yerramalli CS; Chou AI; Miller GJ; Nicoll SB; Chin KR; Elliott DM
    Biomech Model Mechanobiol; 2007 Jan; 6(1-2):13-20. PubMed ID: 16715318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contributions of Glycosaminoglycans to Collagen Fiber Recruitment in Constitutive Modeling of Arterial Mechanics.
    Mattson JM; Wang Y; Zhang Y
    J Biomech; 2019 Jan; 82():211-219. PubMed ID: 30415914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time and dose-dependent effects of chondroitinase ABC on growth of engineered cartilage.
    O'Connell GD; Nims RJ; Green J; Cigan AD; Ateshian GA; Hung CT
    Eur Cell Mater; 2014 Apr; 27():312-20. PubMed ID: 24760578
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.