These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
412 related articles for article (PubMed ID: 19074603)
1. Novel evolutionary engineering approach for accelerated utilization of glucose, xylose, and arabinose mixtures by engineered Saccharomyces cerevisiae strains. Wisselink HW; Toirkens MJ; Wu Q; Pronk JT; van Maris AJ Appl Environ Microbiol; 2009 Feb; 75(4):907-14. PubMed ID: 19074603 [TBL] [Abstract][Full Text] [Related]
2. Establishment of L-arabinose fermentation in glucose/xylose co-fermenting recombinant Saccharomyces cerevisiae 424A(LNH-ST) by genetic engineering. Bera AK; Sedlak M; Khan A; Ho NW Appl Microbiol Biotechnol; 2010 Aug; 87(5):1803-11. PubMed ID: 20449743 [TBL] [Abstract][Full Text] [Related]
3. Fermentation of glucose-xylose-arabinose mixtures by a synthetic consortium of single-sugar-fermenting Saccharomyces cerevisiae strains. Verhoeven MD; de Valk SC; Daran JG; van Maris AJA; Pronk JT FEMS Yeast Res; 2018 Dec; 18(8):. PubMed ID: 30010916 [TBL] [Abstract][Full Text] [Related]
4. Engineering of Saccharomyces cerevisiae for efficient anaerobic alcoholic fermentation of L-arabinose. Wisselink HW; Toirkens MJ; del Rosario Franco Berriel M; Winkler AA; van Dijken JP; Pronk JT; van Maris AJ Appl Environ Microbiol; 2007 Aug; 73(15):4881-91. PubMed ID: 17545317 [TBL] [Abstract][Full Text] [Related]
5. Enhancing ethanol yields through d-xylose and l-arabinose co-fermentation after construction of a novel high efficient l-arabinose-fermenting Saccharomyces cerevisiae strain. Caballero A; Ramos JL Microbiology (Reading); 2017 Apr; 163(4):442-452. PubMed ID: 28443812 [TBL] [Abstract][Full Text] [Related]
6. Enhanced xylose fermentation by engineered yeast expressing NADH oxidase through high cell density inoculums. Zhang GC; Turner TL; Jin YS J Ind Microbiol Biotechnol; 2017 Mar; 44(3):387-395. PubMed ID: 28070721 [TBL] [Abstract][Full Text] [Related]
7. Laboratory evolution for forced glucose-xylose co-consumption enables identification of mutations that improve mixed-sugar fermentation by xylose-fermenting Saccharomyces cerevisiae. Papapetridis I; Verhoeven MD; Wiersma SJ; Goudriaan M; van Maris AJA; Pronk JT FEMS Yeast Res; 2018 Sep; 18(6):. PubMed ID: 29771304 [TBL] [Abstract][Full Text] [Related]
8. Galacturonic acid inhibits the growth of Saccharomyces cerevisiae on galactose, xylose, and arabinose. Huisjes EH; de Hulster E; van Dam JC; Pronk JT; van Maris AJ Appl Environ Microbiol; 2012 Aug; 78(15):5052-9. PubMed ID: 22582063 [TBL] [Abstract][Full Text] [Related]
9. Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization. Krahulec S; Petschacher B; Wallner M; Longus K; Klimacek M; Nidetzky B Microb Cell Fact; 2010 Mar; 9():16. PubMed ID: 20219100 [TBL] [Abstract][Full Text] [Related]
10. Comparing the xylose reductase/xylitol dehydrogenase and xylose isomerase pathways in arabinose and xylose fermenting Saccharomyces cerevisiae strains. Bettiga M; Hahn-Hägerdal B; Gorwa-Grauslund MF Biotechnol Biofuels; 2008 Oct; 1(1):16. PubMed ID: 18947407 [TBL] [Abstract][Full Text] [Related]
11. Toward "homolactic" fermentation of glucose and xylose by engineered Saccharomyces cerevisiae harboring a kinetically efficient l-lactate dehydrogenase within pdc1-pdc5 deletion background. Novy V; Brunner B; Müller G; Nidetzky B Biotechnol Bioeng; 2017 Jan; 114(1):163-171. PubMed ID: 27426989 [TBL] [Abstract][Full Text] [Related]
12. Laboratory evolution of a glucose-phosphorylation-deficient, arabinose-fermenting S. cerevisiae strain reveals mutations in GAL2 that enable glucose-insensitive l-arabinose uptake. Verhoeven MD; Bracher JM; Nijland JG; Bouwknegt J; Daran JG; Driessen AJM; van Maris AJA; Pronk JT FEMS Yeast Res; 2018 Sep; 18(6):. PubMed ID: 29860442 [TBL] [Abstract][Full Text] [Related]
14. Repeated-batch fermentations of xylose and glucose-xylose mixtures using a respiration-deficient Saccharomyces cerevisiae engineered for xylose metabolism. Kim SR; Lee KS; Choi JH; Ha SJ; Kweon DH; Seo JH; Jin YS J Biotechnol; 2010 Nov; 150(3):404-7. PubMed ID: 20933550 [TBL] [Abstract][Full Text] [Related]
16. Confirmation and elimination of xylose metabolism bottlenecks in glucose phosphoenolpyruvate-dependent phosphotransferase system-deficient Clostridium acetobutylicum for simultaneous utilization of glucose, xylose, and arabinose. Xiao H; Gu Y; Ning Y; Yang Y; Mitchell WJ; Jiang W; Yang S Appl Environ Microbiol; 2011 Nov; 77(22):7886-95. PubMed ID: 21926197 [TBL] [Abstract][Full Text] [Related]
17. Fermentation performance and intracellular metabolite patterns in laboratory and industrial xylose-fermenting Saccharomyces cerevisiae. Zaldivar J; Borges A; Johansson B; Smits HP; Villas-Bôas SG; Nielsen J; Olsson L Appl Microbiol Biotechnol; 2002 Aug; 59(4-5):436-42. PubMed ID: 12172606 [TBL] [Abstract][Full Text] [Related]
18. Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae. Verho R; Londesborough J; Penttilä M; Richard P Appl Environ Microbiol; 2003 Oct; 69(10):5892-7. PubMed ID: 14532041 [TBL] [Abstract][Full Text] [Related]
19. Performance testing of Zymomonas mobilis metabolically engineered for cofermentation of glucose, xylose, and arabinose. Lawford HG; Rousseau JD Appl Biochem Biotechnol; 2002; 98-100():429-48. PubMed ID: 12018270 [TBL] [Abstract][Full Text] [Related]
20. Metabolic engineering of Saccharomyces cerevisiae ethanol strains PE-2 and CAT-1 for efficient lignocellulosic fermentation. Romaní A; Pereira F; Johansson B; Domingues L Bioresour Technol; 2015 Mar; 179():150-158. PubMed ID: 25536512 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]