These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 19074665)
41. Comparative study on in vitro biocompatibility of synthetic octacalcium phosphate and calcium phosphate ceramics used clinically. Morimoto S; Anada T; Honda Y; Suzuki O Biomed Mater; 2012 Aug; 7(4):045020. PubMed ID: 22740587 [TBL] [Abstract][Full Text] [Related]
42. Healing of rabbit calvarial bone defects using biphasic calcium phosphate ceramics made of submicron-sized grains with a hierarchical pore structure. Park JW; Kim ES; Jang JH; Suh JY; Park KB; Hanawa T Clin Oral Implants Res; 2010 Mar; 21(3):268-76. PubMed ID: 20074242 [TBL] [Abstract][Full Text] [Related]
44. Efficacy of coral-hydroxyapatite and biphasic calcium phosphate for early bacterial detection. Lobaina T; Zhurbenko R; Alfonso I; Rodríguez C; Gala-García A; Gontijo SL; Cortés ME; Gomes A; Sinisterra RD Biointerphases; 2014 Jun; 9(2):029018. PubMed ID: 24985222 [TBL] [Abstract][Full Text] [Related]
45. Quantitative stereological analysis of the highly porous hydroxyapatite scaffolds using X-ray CM and SEM. Zygmuntowicz J; Zima A; Czechowska J; Szlazak K; Ślosarczyk A; Konopka K Biomed Mater Eng; 2017; 28(3):235-246. PubMed ID: 28527187 [TBL] [Abstract][Full Text] [Related]
46. Surface potential and osteoblast attraction to calcium phosphate compounds is affected by selected alkaline hydrolysis processing. Smith IO; Baumann MJ; Obadia L; Bouler JM J Mater Sci Mater Med; 2004 Aug; 15(8):841-6. PubMed ID: 15477734 [TBL] [Abstract][Full Text] [Related]
47. [Preparation of porous ceramic macro-tubes scaffold]. Zheng W Zhongguo Yi Liao Qi Xie Za Zhi; 2011 May; 35(3):185-8. PubMed ID: 21954576 [TBL] [Abstract][Full Text] [Related]
48. Effect of phase composition and microstructure of calcium phosphate ceramic particles on protein adsorption. Zhu XD; Zhang HJ; Fan HS; Li W; Zhang XD Acta Biomater; 2010 Apr; 6(4):1536-41. PubMed ID: 19857608 [TBL] [Abstract][Full Text] [Related]
49. Protein adsorption and zeta potentials of a biphasic calcium phosphate ceramic under various conditions. Zhu X; Fan H; Li D; Xiao Y; Zhang X J Biomed Mater Res B Appl Biomater; 2007 Jul; 82(1):65-73. PubMed ID: 17078080 [TBL] [Abstract][Full Text] [Related]
50. Evaluation of ceramics composed of different hydroxyapatite to tricalcium phosphate ratios as carriers for rhBMP-2. Alam MI; Asahina I; Ohmamiuda K; Takahashi K; Yokota S; Enomoto S Biomaterials; 2001 Jun; 22(12):1643-51. PubMed ID: 11374466 [TBL] [Abstract][Full Text] [Related]
51. Calcium phosphate bioceramics induce mineralization modulated by proteins. Wang K; Leng Y; Lu X; Ren F Mater Sci Eng C Mater Biol Appl; 2013 Aug; 33(6):3245-55. PubMed ID: 23706207 [TBL] [Abstract][Full Text] [Related]
52. Effect of TiO2-Ag2O additives on the formation of calcium phosphate based functionally graded bioceramics. Manjubala I; Sampath Kumar TS Biomaterials; 2000 Oct; 21(19):1995-2002. PubMed ID: 10941921 [TBL] [Abstract][Full Text] [Related]
53. Nano-hydroxyapatite/β-tricalcium phosphate ceramics scaffolds loaded with cationic liposomal ceftazidime: preparation, release characteristics in vitro and inhibition to Staphylococcus aureus biofilms. Zhou TH; Su M; Shang BC; Ma T; Xu GL; Li HL; Chen QH; Sun W; Xu YQ Drug Dev Ind Pharm; 2012 Nov; 38(11):1298-304. PubMed ID: 22257380 [TBL] [Abstract][Full Text] [Related]
54. Osteoconductivity and osteoinductivity of porous hydroxyapatite coatings deposited by liquid precursor plasma spraying: in vivo biological response study. Huang Y; He J; Gan L; Liu X; Wu Y; Wu F; Gu ZW Biomed Mater; 2014 Nov; 9(6):065007. PubMed ID: 25384201 [TBL] [Abstract][Full Text] [Related]
55. Osseointegration of hydroxyapatite and remodeling-resorption of tricalciumphosphate ceramics. Draenert M; Draenert A; Draenert K Microsc Res Tech; 2013 Apr; 76(4):370-80. PubMed ID: 23390042 [TBL] [Abstract][Full Text] [Related]
56. Effects of interconnecting porous structure of hydroxyapatite ceramics on interface between grafted tendon and ceramics. Omae H; Mochizuki Y; Yokoya S; Adachi N; Ochi M J Biomed Mater Res A; 2006 Nov; 79(2):329-37. PubMed ID: 16817208 [TBL] [Abstract][Full Text] [Related]
57. Preparation, mechanical property and cytocompatibility of freeze-cast porous calcium phosphate ceramics reinforced by phosphate-based glass. Yang Y; He F; Ye J Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():1004-9. PubMed ID: 27612796 [TBL] [Abstract][Full Text] [Related]
58. Effects of rheological properties on ice-templated porous hydroxyapatite ceramics. Zhang Y; Zhou K; Bao Y; Zhang D Mater Sci Eng C Mater Biol Appl; 2013 Jan; 33(1):340-6. PubMed ID: 25428079 [TBL] [Abstract][Full Text] [Related]
59. Comparative study of biphasic calcium phosphate ceramics impregnated with rhBMP-2 as bone substitutes. Alam I; Asahina I; Ohmamiuda K; Enomoto S J Biomed Mater Res; 2001 Jan; 54(1):129-38. PubMed ID: 11077412 [TBL] [Abstract][Full Text] [Related]
60. Osteoblast and osteoclast responses to A/B type carbonate-substituted hydroxyapatite ceramics for bone regeneration. Germaini MM; Detsch R; Grünewald A; Magnaudeix A; Lalloue F; Boccaccini AR; Champion E Biomed Mater; 2017 Jun; 12(3):035008. PubMed ID: 28351999 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]