These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
238 related articles for article (PubMed ID: 19075612)
1. The osteogenic differentiation of adipose tissue-derived precursor cells in a 3D scaffold/matrix environment. Leong DT; Nah WK; Gupta A; Hutmacher DW; Woodruff MA Curr Drug Discov Technol; 2008 Dec; 5(4):319-27. PubMed ID: 19075612 [TBL] [Abstract][Full Text] [Related]
2. Three-dimensional printed polycaprolactone-based scaffolds provide an advantageous environment for osteogenic differentiation of human adipose-derived stem cells. Rumiński S; Ostrowska B; Jaroszewicz J; Skirecki T; Włodarski K; Święszkowski W; Lewandowska-Szumieł M J Tissue Eng Regen Med; 2018 Jan; 12(1):e473-e485. PubMed ID: 27599449 [TBL] [Abstract][Full Text] [Related]
3. Osteogenic differentiation of human adipose-derived stem cells in 3D conditions - comparison of spheroids and polystyrene scaffolds. Rumiński S; Kalaszczyńska I; Długosz A; Lewandowska-Szumieł M Eur Cell Mater; 2019 May; 37():382-401. PubMed ID: 31099888 [TBL] [Abstract][Full Text] [Related]
4. Osteogenic potentiation of human adipose-derived stem cells in a 3-dimensional matrix. Gabbay JS; Heller JB; Mitchell SA; Zuk PA; Spoon DB; Wasson KL; Jarrahy R; Benhaim P; Bradley JP Ann Plast Surg; 2006 Jul; 57(1):89-93. PubMed ID: 16799316 [TBL] [Abstract][Full Text] [Related]
5. Precipitation of nanohydroxyapatite on PLLA/PBLG/Collagen nanofibrous structures for the differentiation of adipose derived stem cells to osteogenic lineage. Ravichandran R; Venugopal JR; Sundarrajan S; Mukherjee S; Ramakrishna S Biomaterials; 2012 Jan; 33(3):846-55. PubMed ID: 22048006 [TBL] [Abstract][Full Text] [Related]
6. Differentiation of adipose-derived stem cells toward nucleus pulposus-like cells induced by hypoxia and a three-dimensional chitosan-alginate gel scaffold in vitro. Zhang Z; Li F; Tian H; Guan K; Zhao G; Shan J; Ren D Chin Med J (Engl); 2014; 127(2):314-21. PubMed ID: 24438622 [TBL] [Abstract][Full Text] [Related]
7. Chemical group-dependent plasma polymerisation preferentially directs adipose stem cell differentiation towards osteogenic or chondrogenic lineages. Griffin MF; Ibrahim A; Seifalian AM; Butler PEM; Kalaskar DM; Ferretti P Acta Biomater; 2017 Mar; 50():450-461. PubMed ID: 27956359 [TBL] [Abstract][Full Text] [Related]
8. Osteogenesis of adipose-derived stem cells on polycaprolactone-β-tricalcium phosphate scaffold fabricated via selective laser sintering and surface coating with collagen type I. Liao HT; Lee MY; Tsai WW; Wang HC; Lu WC J Tissue Eng Regen Med; 2016 Oct; 10(10):E337-E353. PubMed ID: 23955935 [TBL] [Abstract][Full Text] [Related]
9. Osteogenesis of 3D-Printed PCL/TCP/bdECM Scaffold Using Adipose-Derived Stem Cells Aggregates; An Experimental Study in the Canine Mandible. Lee JS; Park TH; Ryu JY; Kim DK; Oh EJ; Kim HM; Shim JH; Yun WS; Huh JB; Moon SH; Kang SS; Chung HY Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34063742 [TBL] [Abstract][Full Text] [Related]
10. Collagen I gel can facilitate homogenous bone formation of adipose-derived stem cells in PLGA-beta-TCP scaffold. Hao W; Hu YY; Wei YY; Pang L; Lv R; Bai JP; Xiong Z; Jiang M Cells Tissues Organs; 2008; 187(2):89-102. PubMed ID: 17938566 [TBL] [Abstract][Full Text] [Related]
11. Argon plasma modification promotes adipose derived stem cells osteogenic and chondrogenic differentiation on nanocomposite polyurethane scaffolds; implications for skeletal tissue engineering. Griffin MF; Ibrahim A; Seifalian AM; Butler PEM; Kalaskar DM; Ferretti P Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110085. PubMed ID: 31546386 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of a thermoresponsive polycaprolactone scaffold for in vitro three-dimensional stem cell differentiation. Hruschka V; Saeed A; Slezak P; Cheikh Al Ghanami R; Feichtinger GA; Alexander C; Redl H; Shakesheff K; Wolbank S Tissue Eng Part A; 2015 Jan; 21(1-2):310-9. PubMed ID: 25167885 [TBL] [Abstract][Full Text] [Related]
13. Electromagnetic fields enhance chondrogenesis of human adipose-derived stem cells in a chondrogenic microenvironment in vitro. Chen CH; Lin YS; Fu YC; Wang CK; Wu SC; Wang GJ; Eswaramoorthy R; Wang YH; Wang CZ; Wang YH; Lin SY; Chang JK; Ho ML J Appl Physiol (1985); 2013 Mar; 114(5):647-55. PubMed ID: 23239875 [TBL] [Abstract][Full Text] [Related]
15. Beta-tricalcium phosphate 3D scaffold promote alone osteogenic differentiation of human adipose stem cells: in vitro study. Marino G; Rosso F; Cafiero G; Tortora C; Moraci M; Barbarisi M; Barbarisi A J Mater Sci Mater Med; 2010 Jan; 21(1):353-63. PubMed ID: 19655233 [TBL] [Abstract][Full Text] [Related]
16. Osteogenic differentiation of adipose-derived stromal cells treated with GDF-5 cultured on a novel three-dimensional sintered microsphere matrix. Shen FH; Zeng Q; Lv Q; Choi L; Balian G; Li X; Laurencin CT Spine J; 2006; 6(6):615-23. PubMed ID: 17088192 [TBL] [Abstract][Full Text] [Related]
17. Implications of adipose-derived stromal cells in a 3D culture system for osteogenic differentiation: an in vitro and in vivo investigation. Shen FH; Werner BC; Liang H; Shang H; Yang N; Li X; Shimer AL; Balian G; Katz AJ Spine J; 2013 Jan; 13(1):32-43. PubMed ID: 23384881 [TBL] [Abstract][Full Text] [Related]
18. Comparison of human alveolar osteoblasts cultured on polymer-ceramic composite scaffolds and tissue culture plates. Yefang Z; Hutmacher DW; Varawan SL; Meng LT Int J Oral Maxillofac Surg; 2007 Feb; 36(2):137-45. PubMed ID: 17113755 [TBL] [Abstract][Full Text] [Related]
19. Adipose- and bone marrow-derived mesenchymal stem cells display different osteogenic differentiation patterns in 3D bioactive glass-based scaffolds. Rath SN; Nooeaid P; Arkudas A; Beier JP; Strobel LA; Brandl A; Roether JA; Horch RE; Boccaccini AR; Kneser U J Tissue Eng Regen Med; 2016 Oct; 10(10):E497-E509. PubMed ID: 24357645 [TBL] [Abstract][Full Text] [Related]
20. Osteogenic differentiation of human mesenchymal stem cells in 3-D Zr-Si organic-inorganic scaffolds produced by two-photon polymerization technique. Koroleva A; Deiwick A; Nguyen A; Schlie-Wolter S; Narayan R; Timashev P; Popov V; Bagratashvili V; Chichkov B PLoS One; 2015; 10(2):e0118164. PubMed ID: 25706270 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]