BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 19075748)

  • 1. The hemoglobins of fishes living at polar latitudes - current knowledge on structural adaptations in a changing environment.
    Verde C; Vergara A; Mazzarella L; di Prisco G
    Curr Protein Pept Sci; 2008 Dec; 9(6):578-90. PubMed ID: 19075748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The adaptation of polar fishes to climatic changes: Structure, function and phylogeny of haemoglobin.
    Verde C; Giordano D; di Prisco G
    IUBMB Life; 2008 Jan; 60(1):29-40. PubMed ID: 18379990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The evolution of thermal adaptation in polar fish.
    Verde C; Parisi E; di Prisco G
    Gene; 2006 Dec; 385():137-45. PubMed ID: 16757135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biogeography and adaptation of Notothenioid fish: hemoglobin function and globin-gene evolution.
    di Prisco G; Eastman JT; Giordano D; Parisi E; Verde C
    Gene; 2007 Aug; 398(1-2):143-55. PubMed ID: 17553637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The hemoglobins of the sub-Antarctic fish Cottoperca gobio, a phyletically basal species--oxygen-binding equilibria, kinetics and molecular dynamics.
    Giordano D; Boechi L; Vergara A; Martí MA; Samuni U; Dantsker D; Grassi L; Estrin DA; Friedman JM; Mazzarella L; di Prisco G; Verde C
    FEBS J; 2009 Apr; 276(8):2266-77. PubMed ID: 19292863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The evolution of polar fish hemoglobin: a phylogenetic analysis of the ancestral amino acid residues linked to the root effect.
    Verde C; Parisi E; di Prisco G
    J Mol Evol; 2003; 57 Suppl 1():S258-67. PubMed ID: 15008423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hemoglobin structure/function and globin-gene evolution in the Arctic fish Liparis tunicatus.
    Giordano D; Vergara A; Lee HC; Peisach J; Balestrieri M; Mazzarella L; Parisi E; di Prisco G; Verde C
    Gene; 2007 Dec; 406(1-2):58-68. PubMed ID: 17618067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The oxygen transport system in three species of the boreal fish family Gadidae. Molecular phylogeny of hemoglobin.
    Verde C; Balestrieri M; de Pascale D; Pagnozzi D; Lecointre G; di Prisco G
    J Biol Chem; 2006 Aug; 281(31):22073-22084. PubMed ID: 16717098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The hemoglobins of Notothenia angustata, a temperate fish belonging to a family largely endemic to the Antarctic Ocean.
    Fago A; D'Avino R; Di Prisco G
    Eur J Biochem; 1992 Dec; 210(3):963-70. PubMed ID: 1483479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure/function and phylogeny of hemoglobins of polar fishes.
    Verde C; di Prisco G
    Micron; 2004; 35(1-2):77-80. PubMed ID: 15036298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biochemical adaptations of notothenioid fishes: comparisons between cold temperate South American and New Zealand species and Antarctic species.
    Coppes Petricorena ZL; Somero GN
    Comp Biochem Physiol A Mol Integr Physiol; 2007 Jul; 147(3):799-807. PubMed ID: 17293146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular evolution of hemoglobins of Antarctic fishes (Notothenioidei).
    Stam WT; Beintema JJ; D'Avino R; Tamburrini M; di Prisco G
    J Mol Evol; 1997 Oct; 45(4):437-45. PubMed ID: 9321422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antarctic fish hemoglobins: evidence for adaptive evolution at subzero temperature.
    Bargelloni L; Marcato S; Patarnello T
    Proc Natl Acad Sci U S A; 1998 Jul; 95(15):8670-5. PubMed ID: 9671736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectroscopic and crystallographic characterization of bis-histidyl adducts in tetrameric hemoglobins.
    Vergara A; Vitagliano L; Verde C; di Prisco G; Mazzarella L
    Methods Enzymol; 2008; 436():425-44. PubMed ID: 18237647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular cloning and characterization of adult Sparus aurata hemoglobin genes.
    Campo S; Nastasi G; Fedeli D; D'Ascola A; Campo GM; Avenoso A; Ferlazzo A; Calatroni A; Falcioni G
    OMICS; 2010 Apr; 14(2):187-200. PubMed ID: 20210659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Muscle metabolism and growth in Antarctic fishes (suborder Notothenioidei): evolution in a cold environment.
    Johnston IA
    Comp Biochem Physiol B Biochem Mol Biol; 2003 Dec; 136(4):701-13. PubMed ID: 14662295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The hemoglobins of the cold-adapted Antarctic teleost Cygnodraco mawsoni.
    Caruso C; Rutigliano B; Romano M; di Prisco G
    Biochim Biophys Acta; 1991 Jun; 1078(2):273-82. PubMed ID: 2065095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The hemoglobin system of Pleuragramma antarcticum: correlation of hematological and biochemical adaptations with life style.
    Tamburrini M; D'Avino R; Carratore V; Kunzmann A; di Prisco G
    Comp Biochem Physiol A Physiol; 1997 Dec; 118(4):1037-44. PubMed ID: 9505418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure, function and molecular adaptations of haemoglobins of the polar cartilaginous fish Bathyraja eatonii and Raja hyperborea.
    Verde C; De Rosa MC; Giordano D; Mosca D; De Pascale D; Raiola L; Cocca E; Carratore V; Giardina B; Di Prisco G
    Biochem J; 2005 Jul; 389(Pt 2):297-306. PubMed ID: 15807670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The oxidation process of Antarctic fish hemoglobins.
    Vitagliano L; Bonomi G; Riccio A; di Prisco G; Smulevich G; Mazzarella L
    Eur J Biochem; 2004 May; 271(9):1651-9. PubMed ID: 15096204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.