These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 19076046)

  • 1. The use of nanoporous adsorbents in filtering media for improving indoor air quality.
    Pinto ML
    Recent Pat Nanotechnol; 2008; 2(2):120-7. PubMed ID: 19076046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoporous air filtering systems made from renewable sources: benefits and challenges.
    Dutta A; Karamikamkar S; Nofar M; Behzadfar E
    Nanoscale; 2024 Aug; 16(32):15059-15077. PubMed ID: 39072362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Short-term effect of humid airflow on antimicrobial air filters using Sophora flavescens nanoparticles.
    Hwang GB; Lee JE; Nho CW; Lee BU; Lee SJ; Jung JH; Bae GN
    Sci Total Environ; 2012 Apr; 421-422():273-9. PubMed ID: 22369866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Can a photocatalytic air purifier be used to improve the perceived air quality indoors?
    Kolarik J; Wargocki P
    Indoor Air; 2010 Jun; 20(3):255-62. PubMed ID: 20573125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Achieving 'excellent' indoor air quality in commercial offices equipped with air-handling unit--respirable suspended particulate.
    Lam KS; Chan FS; Fung WY; Lui BS; Lau LW
    Indoor Air; 2006 Apr; 16(2):86-97. PubMed ID: 16507037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of viable bioaerosol particles with a low-efficiency HVAC filter enhanced by continuous emission of unipolar air ions.
    Huang R; Agranovski I; Pyankov O; Grinshpun S
    Indoor Air; 2008 Apr; 18(2):106-12. PubMed ID: 18333990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effectiveness of photocatalytic filter for removing volatile organic compounds in the heating, ventilation, and air conditioning system.
    Yu KP; Lee GW; Huang WM; Wu CC; Lou CL; Yang S
    J Air Waste Manag Assoc; 2006 May; 56(5):666-74. PubMed ID: 16739804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time evaluation of ventilation filter-bank systems.
    Moyer ES; Commodore MA; Hayes JL; Fotta SA; Berardinelli SP
    J Occup Environ Hyg; 2007 Jan; 4(1):58-69. PubMed ID: 17162482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reducing indoor air pollutants with air filtration units in wood stove homes.
    McNamara ML; Thornburg J; Semmens EO; Ward TJ; Noonan CW
    Sci Total Environ; 2017 Aug; 592():488-494. PubMed ID: 28320525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving indoor air quality by using the new generation of corrugated cardboard-based filters.
    Candiani G; Del Curto B; Cigada A
    J Appl Biomater Funct Mater; 2012 Sep; 10(2):157-62. PubMed ID: 23015374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Porous silica spheres as indoor air pollutant scavengers.
    Delaney P; Healy RM; Hanrahan JP; Gibson LT; Wenger JC; Morris MA; Holmes JD
    J Environ Monit; 2010 Dec; 12(12):2244-51. PubMed ID: 20941430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance of ultraviolet photocatalytic oxidation for indoor air cleaning applications.
    Hodgson AT; Destaillats H; Sullivan DP; Fisk WJ
    Indoor Air; 2007 Aug; 17(4):305-16. PubMed ID: 17661927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of acoustic agglomeration to enhance air filtration efficiency in air-conditioning and mechanical ventilation (ACMV) systems.
    Ng BF; Xiong JW; Wan MP
    PLoS One; 2017; 12(6):e0178851. PubMed ID: 28594862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption properties of regenerative materials for removal of low concentration of toluene.
    Xie ZZ; Wang L; Cheng G; Shi L; Zhang YB
    J Air Waste Manag Assoc; 2016 Dec; 66(12):1224-1236. PubMed ID: 27580427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An in-situ thermally regenerated air purifier for indoor formaldehyde removal.
    Xiao R; Mo J; Zhang Y; Gao D
    Indoor Air; 2018 Mar; 28(2):266-275. PubMed ID: 29168902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication and characterization of micro-porous cellulose filters for indoor air quality control.
    Yoon Y; Kim S; Ahn KH; Ko KB; Kim KS
    Environ Technol; 2016; 37(6):703-12. PubMed ID: 26370434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ventilation filters and indoor air quality: a review of research from the International Centre for Indoor Environment and Energy.
    Clausen G
    Indoor Air; 2004; 14 Suppl 7():202-7. PubMed ID: 15330788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Indoor particles affect vascular function in the aged: an air filtration-based intervention study.
    Bräuner EV; Forchhammer L; Møller P; Barregard L; Gunnarsen L; Afshari A; Wåhlin P; Glasius M; Dragsted LO; Basu S; Raaschou-Nielsen O; Loft S
    Am J Respir Crit Care Med; 2008 Feb; 177(4):419-25. PubMed ID: 17932377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitigation of indoor air pollution: A review of recent advances in adsorption materials and catalytic oxidation.
    Yue X; Ma NL; Sonne C; Guan R; Lam SS; Van Le Q; Chen X; Yang Y; Gu H; Rinklebe J; Peng W
    J Hazard Mater; 2021 Mar; 405():124138. PubMed ID: 33092884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exposure to nanoscale and microscale particulate air pollution prior to mining development near a northern indigenous community in Québec, Canada.
    Ghoshdastidar AJ; Hu Z; Nazarenko Y; Ariya PA
    Environ Sci Pollut Res Int; 2018 Mar; 25(9):8976-8988. PubMed ID: 29332278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.