BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 19076298)

  • 1. C1 metabolism and chlorophyll synthesis: the Mg-protoporphyrin IX methyltransferase activity is dependent on the folate status.
    Van Wilder V; De Brouwer V; Loizeau K; Gambonnet B; Albrieux C; Van Der Straeten D; Lambert WE; Douce R; Block MA; Rebeille F; Ravanel S
    New Phytol; 2009; 182(1):137-145. PubMed ID: 19076298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. One-carbon metabolism in plants. Regulation of tetrahydrofolate synthesis during germination and seedling development.
    Jabrin S; Ravanel S; Gambonnet B; Douce R; Rébeillé F
    Plant Physiol; 2003 Mar; 131(3):1431-9. PubMed ID: 12644692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A genome-wide and metabolic analysis determined the adaptive response of Arabidopsis cells to folate depletion induced by methotrexate.
    Loizeau K; De Brouwer V; Gambonnet B; Yu A; Renou JP; Van Der Straeten D; Lambert WE; Rébeillé F; Ravanel S
    Plant Physiol; 2008 Dec; 148(4):2083-95. PubMed ID: 18931140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Knock-out of the magnesium protoporphyrin IX methyltransferase gene in Arabidopsis. Effects on chloroplast development and on chloroplast-to-nucleus signaling.
    Pontier D; Albrieux C; Joyard J; Lagrange T; Block MA
    J Biol Chem; 2007 Jan; 282(4):2297-304. PubMed ID: 17135235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural insights into the catalytic mechanism of Synechocystis magnesium protoporphyrin IX O-methyltransferase (ChlM).
    Chen X; Wang X; Feng J; Chen Y; Fang Y; Zhao S; Zhao A; Zhang M; Liu L
    J Biol Chem; 2014 Sep; 289(37):25690-8. PubMed ID: 25077963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hepatic one-carbon metabolism in early folate deficiency in rats.
    Balaghi M; Horne DW; Wagner C
    Biochem J; 1993 Apr; 291 ( Pt 1)(Pt 1):145-9. PubMed ID: 8471033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arabidopsis Mg-Protoporphyrin IX Methyltransferase Activity and Redox Regulation Depend on Conserved Cysteines.
    Richter AS; Wang P; Grimm B
    Plant Cell Physiol; 2016 Mar; 57(3):519-27. PubMed ID: 26759408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cobalamin dependent methionine synthesis and methyl-folate-trap in human vitamin B12 deficiency.
    Sauer H; Wilmanns W
    Br J Haematol; 1977 Jun; 36(2):189-98. PubMed ID: 871432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mg-chelatase I subunit 1 and Mg-protoporphyrin IX methyltransferase affect the stomatal aperture in Arabidopsis thaliana.
    Tomiyama M; Inoue S; Tsuzuki T; Soda M; Morimoto S; Okigaki Y; Ohishi T; Mochizuki N; Takahashi K; Kinoshita T
    J Plant Res; 2014 Jul; 127(4):553-63. PubMed ID: 24840863
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Posttranslational influence of NADPH-dependent thioredoxin reductase C on enzymes in tetrapyrrole synthesis.
    Richter AS; Peter E; Rothbart M; Schlicke H; Toivola J; Rintamäki E; Grimm B
    Plant Physiol; 2013 May; 162(1):63-73. PubMed ID: 23569108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impaired Magnesium Protoporphyrin IX Methyltransferase (ChlM) Impedes Chlorophyll Synthesis and Plant Growth in Rice.
    Wang Z; Hong X; Hu K; Wang Y; Wang X; Du S; Li Y; Hu D; Cheng K; An B; Li Y
    Front Plant Sci; 2017; 8():1694. PubMed ID: 29033966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of one-carbon metabolism in Arabidopsis: the N-terminal regulatory domain of cystathionine gamma-synthase is cleaved in response to folate starvation.
    Loizeau K; Gambonnet B; Zhang GF; Curien G; Jabrin S; Van Der Straeten D; Lambert WE; Rébeillé F; Ravanel S
    Plant Physiol; 2007 Oct; 145(2):491-503. PubMed ID: 17720756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigating the regulation of one-carbon metabolism in Arabidopsis thaliana.
    Li R; Moore M; King J
    Plant Cell Physiol; 2003 Mar; 44(3):233-41. PubMed ID: 12668769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methionine synthase is essential for cancer cell proliferation in physiological folate environments.
    Sullivan MR; Darnell AM; Reilly MF; Kunchok T; Joesch-Cohen L; Rosenberg D; Ali A; Rees MG; Roth JA; Lewis CA; Vander Heiden MG
    Nat Metab; 2021 Nov; 3(11):1500-1511. PubMed ID: 34799701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of carrier-mediated transport of folates and antifolates in methotrexate-sensitive and-resistant leukemia cells.
    Jansen G; Mauritz RM; Assaraf YG; Sprecher H; Drori S; Kathmann I; Westerhof GR; Priest DG; Bunni M; Pinedo HM; Schornagel JH; Peters GJ
    Adv Enzyme Regul; 1997; 37():59-76. PubMed ID: 9381986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compartmentation of folate metabolism in rat pancreas: nitrous oxide inactivation of methionine synthase leads to accumulation of 5-methyltetrahydrofolate in cytosol.
    Horne DW; Holloway RS
    J Nutr; 1997 Sep; 127(9):1772-5. PubMed ID: 9278558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Introduction of a new branchpoint in tetrapyrrole biosynthesis in Escherichia coli by co-expression of genes encoding the chlorophyll-specific enzymes magnesium chelatase and magnesium protoporphyrin methyltransferase.
    Jensen PE; Gibson LC; Shephard F; Smith V; Hunter CN
    FEBS Lett; 1999 Jul; 455(3):349-54. PubMed ID: 10437802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methyltetrahydrofolate in folate-binding protein glycine N-methyltransferase.
    Luka Z
    Vitam Horm; 2008; 79():325-45. PubMed ID: 18804700
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Folic Acid, Folinic Acid, 5 Methyl TetraHydroFolate Supplementation for Mutations That Affect Epigenesis through the Folate and One-Carbon Cycles.
    Menezo Y; Elder K; Clement A; Clement P
    Biomolecules; 2022 Jan; 12(2):. PubMed ID: 35204698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Folate-pool interconversions and inhibition of biosynthetic processes after exposure of L1210 leukemia cells to antifolates. Experimental and network thermodynamic analyses of the role of dihydrofolate polyglutamylates in antifolate action in cells.
    Seither RL; Trent DF; Mikulecky DC; Rape TJ; Goldman ID
    J Biol Chem; 1989 Oct; 264(29):17016-23. PubMed ID: 2529254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.