These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 19076307)

  • 1. Challenges in applying photoemission electron microscopy to biological systems.
    Peles DN; Simon JD
    Photochem Photobiol; 2009; 85(1):8-20. PubMed ID: 19076307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Imaging the cell surface: argon sputtering to expose inner cell structures.
    De Stasio G; Frazer BH; Girasole M; Wiese LM; Krasnowska EK; Greco G; Serafino A; Parasassi T
    Microsc Res Tech; 2004 Feb; 63(2):115-21. PubMed ID: 14722909
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoelectron imaging of viruses and DNA: evaluation of substrates by unidirectional low angle shadowing and photoemission current measurements.
    Birrell GB; Habliston DL; Griffith OH
    Biophys J; 1994 Nov; 67(5):2041-7. PubMed ID: 7858141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoemission electron microscopy using extreme ultraviolet attosecond pulse trains.
    Mikkelsen A; Schwenke J; Fordell T; Luo G; Klünder K; Hilner E; Anttu N; Zakharov AA; Lundgren E; Mauritsson J; Andersen JN; Xu HQ; L'Huillier A
    Rev Sci Instrum; 2009 Dec; 80(12):123703. PubMed ID: 20059146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A near ambient pressure photoemission electron microscope (NAP-PEEM).
    Ning Y; Fu Q; Li Y; Zhao S; Wang C; Breitschaft M; Hagen S; Schaff O; Bao X
    Ultramicroscopy; 2019 May; 200():105-110. PubMed ID: 30851711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 5.4 nm spatial resolution in biological photoemission electron microscopy.
    Könenkamp R; Word RC; Rempfer GF; Dixon T; Almaraz L; Jones T
    Ultramicroscopy; 2010 Jun; 110(7):899-902. PubMed ID: 20434264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Imaging XPS and photoemission electron microscopy; surface chemical mapping and blood cell visualization.
    Skallberg A; Brommesson C; Uvdal K
    Biointerphases; 2017 May; 12(2):02C408. PubMed ID: 28464614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of X-ray photoemission electron microscopy (X-PEEM) at the SRS.
    Smith AD; Cressey G; Schofield PF; Cressey BA
    J Synchrotron Radiat; 1998 May; 5(Pt 3):1108-10. PubMed ID: 15263761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Imaging of placental transport mechanisms: a review.
    Sölder E; Rohr I; Kremser C; Hutzler P; Debbage PL
    Eur J Obstet Gynecol Reprod Biol; 2009 May; 144 Suppl 1():S114-20. PubMed ID: 19297073
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights into melanosomes and melanin from some interesting spatial and temporal properties.
    Simon JD; Hong L; Peles DN
    J Phys Chem B; 2008 Oct; 112(42):13201-17. PubMed ID: 18817437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The potential role of photoelectron microscopy in the analysis of biological surfaces.
    Griffith OH; Nadakavukaren KK; Jost PC
    Scan Electron Microsc; 1984; (Pt 2):633-44. PubMed ID: 6541368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Practical considerations for high spatial and temporal resolution dynamic transmission electron microscopy.
    Armstrong MR; Boyden K; Browning ND; Campbell GH; Colvin JD; DeHope WJ; Frank AM; Gibson DJ; Hartemann F; Kim JS; King WE; LaGrange TB; Pyke BJ; Reed BW; Shuttlesworth RM; Stuart BC; Torralva BR
    Ultramicroscopy; 2007; 107(4-5):356-67. PubMed ID: 17169490
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A simple energy filter for low energy electron microscopy/photoelectron emission microscopy instruments.
    Tromp RM; Fujikawa Y; Hannon JB; Ellis AW; Berghaus A; Schaff O
    J Phys Condens Matter; 2009 Aug; 21(31):314007. PubMed ID: 21828568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dose-limited spectroscopic imaging of soft materials by low-loss EELS in the scanning transmission electron microscope.
    Yakovlev S; Libera M
    Micron; 2008 Aug; 39(6):734-40. PubMed ID: 18096395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contrast mechanisms and image formation in helium ion microscopy.
    Bell DC
    Microsc Microanal; 2009 Apr; 15(2):147-53. PubMed ID: 19284896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmon-induced optical field enhancement studied by correlated scanning and photoemission electron microscopy.
    Peppernick SJ; Joly AG; Beck KM; Hess WP
    J Chem Phys; 2013 Apr; 138(15):154701. PubMed ID: 23614430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A high vacuum photoelectron microscope for the study of biological specimens.
    Griffith OH; Rempfer GF; Lesch GH
    Scan Electron Microsc; 1981; (Pt 2):123-30. PubMed ID: 7323723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies of nanomagnetism using synchrotron-based x-ray photoemission electron microscopy (X-PEEM).
    Cheng XM; Keavney DJ
    Rep Prog Phys; 2012 Feb; 75(2):026501. PubMed ID: 22790347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Possibilities and limits of electron microscopy (author's transl)].
    Heydenreich J
    Microsc Acta; 1977 Jul; 79(4):301-26. PubMed ID: 927211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A temperature-jump device for time-resolved cryo-transmission electron microscopy.
    Chestnut MH; Siegel DP; Burns JL; Talmon Y
    Microsc Res Tech; 1992 Jan; 20(1):95-101. PubMed ID: 1611152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.