These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 19076451)
21. Trapping oxidative folding intermediates during translocation to the intermembrane space of mitochondria: in vivo and in vitro studies. Sideris DP; Tokatlidis K Methods Mol Biol; 2010; 619():411-23. PubMed ID: 20419425 [TBL] [Abstract][Full Text] [Related]
22. Mitochondrial thiol oxidase Erv1: both shuttle cysteine residues are required for its function with distinct roles. Ang SK; Zhang M; Lodi T; Lu H Biochem J; 2014 Jun; 460(2):199-210. PubMed ID: 24625320 [TBL] [Abstract][Full Text] [Related]
23. Oxidative protein folding in the mitochondrial intermembrane space. Sideris DP; Tokatlidis K Antioxid Redox Signal; 2010 Oct; 13(8):1189-204. PubMed ID: 20214493 [TBL] [Abstract][Full Text] [Related]
24. Mia40 Protein Serves as an Electron Sink in the Mia40-Erv1 Import Pathway. Neal SE; Dabir DV; Tienson HL; Horn DM; Glaeser K; Ogozalek Loo RR; Barrientos A; Koehler CM J Biol Chem; 2015 Aug; 290(34):20804-20814. PubMed ID: 26085103 [TBL] [Abstract][Full Text] [Related]
25. Mitochondrial disulfide relay: redox-regulated protein import into the intermembrane space. Herrmann JM; Riemer J J Biol Chem; 2012 Feb; 287(7):4426-33. PubMed ID: 22157015 [TBL] [Abstract][Full Text] [Related]
26. Targeting and maturation of Erv1/ALR in the mitochondrial intermembrane space. Kallergi E; Andreadaki M; Kritsiligkou P; Katrakili N; Pozidis C; Tokatlidis K; Banci L; Bertini I; Cefaro C; Ciofi-Baffoni S; Gajda K; Peruzzini R ACS Chem Biol; 2012 Apr; 7(4):707-14. PubMed ID: 22296668 [TBL] [Abstract][Full Text] [Related]
27. Mitochondrial Ccs1 contains a structural disulfide bond crucial for the import of this unconventional substrate by the disulfide relay system. Gross DP; Burgard CA; Reddehase S; Leitch JM; Culotta VC; Hell K Mol Biol Cell; 2011 Oct; 22(20):3758-67. PubMed ID: 21865601 [TBL] [Abstract][Full Text] [Related]
28. Oxidation-driven protein import into mitochondria: Insights and blind spots. Riemer J; Fischer M; Herrmann JM Biochim Biophys Acta; 2011 Mar; 1808(3):981-9. PubMed ID: 20537978 [TBL] [Abstract][Full Text] [Related]
29. Cytosolic Fe-S Cluster Protein Maturation and Iron Regulation Are Independent of the Mitochondrial Erv1/Mia40 Import System. Ozer HK; Dlouhy AC; Thornton JD; Hu J; Liu Y; Barycki JJ; Balk J; Outten CE J Biol Chem; 2015 Nov; 290(46):27829-40. PubMed ID: 26396185 [TBL] [Abstract][Full Text] [Related]
30. Erv1 mediates the Mia40-dependent protein import pathway and provides a functional link to the respiratory chain by shuttling electrons to cytochrome c. Allen S; Balabanidou V; Sideris DP; Lisowsky T; Tokatlidis K J Mol Biol; 2005 Nov; 353(5):937-44. PubMed ID: 16185707 [TBL] [Abstract][Full Text] [Related]
31. Osm1 facilitates the transfer of electrons from Erv1 to fumarate in the redox-regulated import pathway in the mitochondrial intermembrane space. Neal SE; Dabir DV; Wijaya J; Boon C; Koehler CM Mol Biol Cell; 2017 Oct; 28(21):2773-2785. PubMed ID: 28814504 [TBL] [Abstract][Full Text] [Related]
32. Novel mitochondrial intermembrane space proteins as substrates of the MIA import pathway. Gabriel K; Milenkovic D; Chacinska A; Müller J; Guiard B; Pfanner N; Meisinger C J Mol Biol; 2007 Jan; 365(3):612-20. PubMed ID: 17095012 [TBL] [Abstract][Full Text] [Related]
33. In vivo evidence for cooperation of Mia40 and Erv1 in the oxidation of mitochondrial proteins. Böttinger L; Gornicka A; Czerwik T; Bragoszewski P; Loniewska-Lwowska A; Schulze-Specking A; Truscott KN; Guiard B; Milenkovic D; Chacinska A Mol Biol Cell; 2012 Oct; 23(20):3957-69. PubMed ID: 22918950 [TBL] [Abstract][Full Text] [Related]
34. Structure of yeast sulfhydryl oxidase erv1 reveals electron transfer of the disulfide relay system in the mitochondrial intermembrane space. Guo PC; Ma JD; Jiang YL; Wang SJ; Bao ZZ; Yu XJ; Chen Y; Zhou CZ J Biol Chem; 2012 Oct; 287(42):34961-34969. PubMed ID: 22910915 [TBL] [Abstract][Full Text] [Related]
35. Kinetic characterisation of Erv1, a key component for protein import and folding in yeast mitochondria. Tang X; Ang SK; Ceh-Pavia E; Heyes DJ; Lu H FEBS J; 2020 Mar; 287(6):1220-1231. PubMed ID: 31569302 [TBL] [Abstract][Full Text] [Related]
36. Reconstitution of the mia40-erv1 oxidative folding pathway for the small tim proteins. Tienson HL; Dabir DV; Neal SE; Loo R; Hasson SA; Boontheung P; Kim SK; Loo JA; Koehler CM Mol Biol Cell; 2009 Aug; 20(15):3481-90. PubMed ID: 19477928 [TBL] [Abstract][Full Text] [Related]
37. Development of the Mitochondrial Intermembrane Space Disulfide Relay Represents a Critical Step in Eukaryotic Evolution. Backes S; Garg SG; Becker L; Peleh V; Glockshuber R; Gould SB; Herrmann JM Mol Biol Evol; 2019 Apr; 36(4):742-756. PubMed ID: 30668797 [TBL] [Abstract][Full Text] [Related]
38. Catch me if you can! Oxidative protein trapping in the intermembrane space of mitochondria. Herrmann JM; Köhl R J Cell Biol; 2007 Feb; 176(5):559-63. PubMed ID: 17312024 [TBL] [Abstract][Full Text] [Related]
39. Disulfide bond formation: sulfhydryl oxidase ALR controls mitochondrial biogenesis of human MIA40. Sztolsztener ME; Brewinska A; Guiard B; Chacinska A Traffic; 2013 Mar; 14(3):309-20. PubMed ID: 23186364 [TBL] [Abstract][Full Text] [Related]
40. Protein import by the mitochondrial disulfide relay in higher eukaryotes. Finger Y; Riemer J Biol Chem; 2020 May; 401(6-7):749-763. PubMed ID: 32142475 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]