These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 19076638)

  • 1. A high-resolution chemical and structural study of framboidal pyrite formed within a low-temperature bacterial biofilm.
    MacLean LC; Tyliszczak T; Gilbert PU; Zhou D; Pray TJ; Onstott TC; Southam G
    Geobiology; 2008 Dec; 6(5):471-80. PubMed ID: 19076638
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interfacial activity and leaching patterns of Leptospirillum ferrooxidans on pyrite.
    Rojas-Chapana JA; Tributsch H
    FEMS Microbiol Ecol; 2004 Jan; 47(1):19-29. PubMed ID: 19712343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation and characterization of a novel Acidithiobacillus ferrivorans strain from the Chilean Altiplano: attachment and biofilm formation on pyrite at low temperature.
    Barahona S; Dorador C; Zhang R; Aguilar P; Sand W; Vera M; Remonsellez F
    Res Microbiol; 2014 Nov; 165(9):782-93. PubMed ID: 25111023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biofilm formation, communication and interactions of leaching bacteria during colonization of pyrite and sulfur surfaces.
    Bellenberg S; Díaz M; Noël N; Sand W; Poetsch A; Guiliani N; Vera M
    Res Microbiol; 2014 Nov; 165(9):773-81. PubMed ID: 25172572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct Detection of Fe(II) in Extracellular Polymeric Substances (EPS) at the Mineral-Microbe Interface in Bacterial Pyrite Leaching.
    Mitsunobu S; Zhu M; Takeichi Y; Ohigashi T; Suga H; Jinno M; Makita H; Sakata M; Ono K; Mase K; Takahashi Y
    Microbes Environ; 2016; 31(1):63-9. PubMed ID: 26947441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of Fe-sulfides in cultures of sulfate-reducing bacteria.
    Gramp JP; Bigham JM; Jones FS; Tuovinen OH
    J Hazard Mater; 2010 Mar; 175(1-3):1062-7. PubMed ID: 19962824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Matrix composition and community structure analysis of a novel bacterial pyrite leaching community.
    Ziegler S; Ackermann S; Majzlan J; Gescher J
    Environ Microbiol; 2009 Sep; 11(9):2329-38. PubMed ID: 19519871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of organic matter in framboidal pyrite oxidation.
    Rigby PA; Dobos SK; Cook FJ; Goonetilleke A
    Sci Total Environ; 2006 Aug; 367(2-3):847-54. PubMed ID: 16839593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arsenopyrite and pyrite bioleaching: evidence from XPS, XRD and ICP techniques.
    Fantauzzi M; Licheri C; Atzei D; Loi G; Elsener B; Rossi G; Rossi A
    Anal Bioanal Chem; 2011 Oct; 401(7):2237-48. PubMed ID: 21847529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Limited role of sessile acidophiles in pyrite oxidation below redox potential of 650 mV.
    Liu C; Jia Y; Sun H; Tan Q; Niu X; Leng X; Ruan R
    Sci Rep; 2017 Jul; 7(1):5032. PubMed ID: 28694428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of selenium incorporated in pyrite and mackinawite as determined by XAFS analyses.
    Diener A; Neumann T; Kramar U; Schild D
    J Contam Hydrol; 2012 May; 133():30-9. PubMed ID: 22484403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anaerobic, nitrate-dependent oxidation of pyrite nanoparticles by Thiobacillus denitrificans.
    Bosch J; Lee KY; Jordan G; Kim KW; Meckenstock RU
    Environ Sci Technol; 2012 Feb; 46(4):2095-101. PubMed ID: 22142180
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of the sulfur species reactivity on biofilm conformation during pyrite colonization by Acidithiobacillus thiooxidans.
    Lara RH; García-Meza JV; Cruz R; Valdez-Pérez D; González I
    Appl Microbiol Biotechnol; 2012 Aug; 95(3):799-809. PubMed ID: 22113561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biofilm formation and interspecies interactions in mixed cultures of thermo-acidophilic archaea Acidianus spp. and Sulfolobus metallicus.
    Castro C; Zhang R; Liu J; Bellenberg S; Neu TR; Donati E; Sand W; Vera M
    Res Microbiol; 2016 Sep; 167(7):604-12. PubMed ID: 27388200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of pyrite oxidation by surface coating: a long-term field study.
    Kang CU; Jeon BH; Park SS; Kang JS; Kim KH; Kim DK; Choi UK; Kim SJ
    Environ Geochem Health; 2016 Oct; 38(5):1137-1146. PubMed ID: 26493832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of biofilms during the colonization process of pyrite by Acidithiobacillus thiooxidans.
    González DM; Lara RH; Alvarado KN; Valdez-Pérez D; Navarro-Contreras HR; Cruz R; García-Meza JV
    Appl Microbiol Biotechnol; 2012 Jan; 93(2):763-75. PubMed ID: 21773763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A direct observation of bacterial coverage and biofilm formation by Acidithiobacillus ferrooxidans on chalcopyrite and pyrite surfaces.
    Yang Y; Tan SN; Glenn AM; Harmer S; Bhargava S; Chen M
    Biofouling; 2015; 31(7):575-86. PubMed ID: 26343200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rates and potential mechanism of anaerobic nitrate-dependent microbial pyrite oxidation.
    Bosch J; Meckenstock RU
    Biochem Soc Trans; 2012 Dec; 40(6):1280-3. PubMed ID: 23176468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Suppression of pyrite oxidation by iron 8-hydroxyquinoline.
    Lan Y; Huang X; Deng B
    Arch Environ Contam Toxicol; 2002 Aug; 43(2):168-74. PubMed ID: 12115042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxygen-dependent niche formation of a pyrite-dependent acidophilic consortium built by archaea and bacteria.
    Ziegler S; Dolch K; Geiger K; Krause S; Asskamp M; Eusterhues K; Kriews M; Wilhelms-Dick D; Goettlicher J; Majzlan J; Gescher J
    ISME J; 2013 Sep; 7(9):1725-37. PubMed ID: 23619304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.