BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 19077192)

  • 1. Whole-cell bioreduction of aromatic alpha-keto esters using Candida tenuis xylose reductase and Candida boidinii formate dehydrogenase co-expressed in Escherichia coli.
    Kratzer R; Pukl M; Egger S; Nidetzky B
    Microb Cell Fact; 2008 Dec; 7():37. PubMed ID: 19077192
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Host cell and expression engineering for development of an E. coli ketoreductase catalyst: enhancement of formate dehydrogenase activity for regeneration of NADH.
    Mädje K; Schmölzer K; Nidetzky B; Kratzer R
    Microb Cell Fact; 2012 Jan; 11():7. PubMed ID: 22236335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Co-expression of formate dehydrogenase from Candida boidinii and (R)-specific carbonyl reductase from Candida parapsilosis CCTCC M203011 in Escherichia coli].
    Sun Y; Zhang R; Xu Y
    Wei Sheng Wu Xue Bao; 2008 Dec; 48(12):1629-33. PubMed ID: 19271538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systematic strain construction and process development: Xylitol production by Saccharomyces cerevisiae expressing Candida tenuis xylose reductase in wild-type or mutant form.
    Pratter SM; Eixelsberger T; Nidetzky B
    Bioresour Technol; 2015 Dec; 198():732-8. PubMed ID: 26452180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enantioselective reduction of carbonyl compounds by whole-cell biotransformation, combining a formate dehydrogenase and a (R)-specific alcohol dehydrogenase.
    Ernst M; Kaup B; Müller M; Bringer-Meyer S; Sahm H
    Appl Microbiol Biotechnol; 2005 Mar; 66(6):629-34. PubMed ID: 15549291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pushing the limits: Cyclodextrin-based intensification of bioreductions.
    Rapp C; Nidetzky B; Kratzer R
    J Biotechnol; 2021 Jan; 325():57-64. PubMed ID: 33220340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Harnessing Candida tenuis and Pichia stipitis in whole-cell bioreductions of o-chloroacetophenone: stereoselectivity, cell activity, in situ substrate supply and product removal.
    Gruber C; Krahulec S; Nidetzky B; Kratzer R
    Biotechnol J; 2013 Jun; 8(6):699-708. PubMed ID: 23589466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzyme identification and development of a whole-cell biotransformation for asymmetric reduction of o-chloroacetophenone.
    Kratzer R; Pukl M; Egger S; Vogl M; Brecker L; Nidetzky B
    Biotechnol Bioeng; 2011 Apr; 108(4):797-803. PubMed ID: 21404254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scale-up and intensification of (S)-1-(2-chlorophenyl)ethanol bioproduction: economic evaluation of whole cell-catalyzed reduction of o-chloroacetophenone.
    Eixelsberger T; Woodley JM; Nidetzky B; Kratzer R
    Biotechnol Bioeng; 2013 Aug; 110(8):2311-5. PubMed ID: 23475609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering of a novel carbonyl reductase with coenzyme regeneration in E. coli for efficient biosynthesis of enantiopure chiral alcohols.
    Wei P; Gao JX; Zheng GW; Wu H; Zong MH; Lou WY
    J Biotechnol; 2016 Jul; 230():54-62. PubMed ID: 27211999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization.
    Krahulec S; Petschacher B; Wallner M; Longus K; Klimacek M; Nidetzky B
    Microb Cell Fact; 2010 Mar; 9():16. PubMed ID: 20219100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transient-state and steady-state kinetic studies of the mechanism of NADH-dependent aldehyde reduction catalyzed by xylose reductase from the yeast Candida tenuis.
    Nidetzky B; Klimacek M; Mayr P
    Biochemistry; 2001 Aug; 40(34):10371-81. PubMed ID: 11513616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Altering the coenzyme preference of xylose reductase to favor utilization of NADH enhances ethanol yield from xylose in a metabolically engineered strain of Saccharomyces cerevisiae.
    Petschacher B; Nidetzky B
    Microb Cell Fact; 2008 Mar; 7():9. PubMed ID: 18346277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient biosynthesis of L-phenylglycine by an engineered Escherichia coli with a tunable multi-enzyme-coordinate expression system.
    Liu Q; Zhou J; Yang T; Zhang X; Xu M; Rao Z
    Appl Microbiol Biotechnol; 2018 Mar; 102(5):2129-2141. PubMed ID: 29352398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient one-step production of (S)-1-phenyl-1,2-ethanediol from (R)-enantiomer plus NAD(+)-NADPH in-situ regeneration using engineered Escherichia coli.
    Zhang R; Xu Y; Xiao R; Zhang B; Wang L
    Microb Cell Fact; 2012 Dec; 11():167. PubMed ID: 23272948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved synthesis of chiral alcohols with Escherichia coli cells co-expressing pyridine nucleotide transhydrogenase, NADP+-dependent alcohol dehydrogenase and NAD+-dependent formate dehydrogenase.
    Weckbecker A; Hummel W
    Biotechnol Lett; 2004 Nov; 26(22):1739-44. PubMed ID: 15604828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly selective anti-Prelog synthesis of optically active aryl alcohols by recombinant Escherichia coli expressing stereospecific alcohol dehydrogenase.
    Li M; Nie Y; Mu XQ; Zhang R; Xu Y
    Prep Biochem Biotechnol; 2016 Jul; 46(5):429-33. PubMed ID: 26178068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Whole-cell biotransformation systems for reduction of prochiral carbonyl compounds to chiral alcohol in Escherichia coli.
    Li B; Li Y; Bai D; Zhang X; Yang H; Wang J; Liu G; Yue J; Ling Y; Zhou D; Chen H
    Sci Rep; 2014 Oct; 4():6750. PubMed ID: 25342633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reductive enzymatic dynamic kinetic resolution affording 115 g/L (S)-2-phenylpropanol.
    Rapp C; Pival-Marko S; Tassano E; Nidetzky B; Kratzer R
    BMC Biotechnol; 2021 Oct; 21(1):58. PubMed ID: 34635076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The coenzyme specificity of Candida tenuis xylose reductase (AKR2B5) explored by site-directed mutagenesis and X-ray crystallography.
    Petschacher B; Leitgeb S; Kavanagh KL; Wilson DK; Nidetzky B
    Biochem J; 2005 Jan; 385(Pt 1):75-83. PubMed ID: 15320875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.