BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 19077451)

  • 1. Genome-wide analysis of pancreatic cancer using microarray-based techniques.
    Harada T; Chelala C; Crnogorac-Jurcevic T; Lemoine NR
    Pancreatology; 2009; 9(1-2):13-24. PubMed ID: 19077451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genomic DNA-chip hybridization reveals a higher incidence of genomic amplifications in pancreatic cancer than conventional comparative genomic hybridization and leads to the identification of novel candidate genes.
    Holzmann K; Kohlhammer H; Schwaenen C; Wessendorf S; Kestler HA; Schwoerer A; Rau B; Radlwimmer B; Döhner H; Lichter P; Gress T; Bentz M
    Cancer Res; 2004 Jul; 64(13):4428-33. PubMed ID: 15231651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-resolution analysis of genomic copy number alterations in bladder cancer by microarray-based comparative genomic hybridization.
    Hurst CD; Fiegler H; Carr P; Williams S; Carter NP; Knowles MA
    Oncogene; 2004 Mar; 23(12):2250-63. PubMed ID: 14968109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined array-comparative genomic hybridization and single-nucleotide polymorphism-loss of heterozygosity analysis reveals complex genetic alterations in cervical cancer.
    Kloth JN; Oosting J; van Wezel T; Szuhai K; Knijnenburg J; Gorter A; Kenter GG; Fleuren GJ; Jordanova ES
    BMC Genomics; 2007 Feb; 8():53. PubMed ID: 17311676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated genomic, transcriptomic, and RNA-interference analysis of genes in somatic copy number gains in pancreatic ductal adenocarcinoma.
    Samuel N; Sayad A; Wilson G; Lemire M; Brown KR; Muthuswamy L; Hudson TJ; Moffat J
    Pancreas; 2013 Aug; 42(6):1016-26. PubMed ID: 23851435
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly expressed genes in pancreatic ductal adenocarcinomas: a comprehensive characterization and comparison of the transcription profiles obtained from three major technologies.
    Iacobuzio-Donahue CA; Ashfaq R; Maitra A; Adsay NV; Shen-Ong GL; Berg K; Hollingsworth MA; Cameron JL; Yeo CJ; Kern SE; Goggins M; Hruban RH
    Cancer Res; 2003 Dec; 63(24):8614-22. PubMed ID: 14695172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-resolution characterization of the pancreatic adenocarcinoma genome.
    Aguirre AJ; Brennan C; Bailey G; Sinha R; Feng B; Leo C; Zhang Y; Zhang J; Gans JD; Bardeesy N; Cauwels C; Cordon-Cardo C; Redston MS; DePinho RA; Chin L
    Proc Natl Acad Sci U S A; 2004 Jun; 101(24):9067-72. PubMed ID: 15199222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of frequent chromosomal aberrations in ductal adenocarcinoma of the pancreas by comparative genomic hybridization (CGH).
    Schleger C; Arens N; Zentgraf H; Bleyl U; Verbeke C
    J Pathol; 2000 May; 191(1):27-32. PubMed ID: 10767715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comprehensive whole genome array CGH profiling of mantle cell lymphoma model genomes.
    de Leeuw RJ; Davies JJ; Rosenwald A; Bebb G; Gascoyne RD; Dyer MJ; Staudt LM; Martinez-Climent JA; Lam WL
    Hum Mol Genet; 2004 Sep; 13(17):1827-37. PubMed ID: 15229187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrated analysis of copy number alterations and loss of heterozygosity in human pancreatic cancer using a high-resolution, single nucleotide polymorphism array.
    Lin LJ; Asaoka Y; Tada M; Sanada M; Nannya Y; Tanaka Y; Tateishi K; Ohta M; Seto M; Sasahira N; Tada M; Kawabe T; Zheng CQ; Kanai F; Ogawa S; Omata M
    Oncology; 2008; 75(1-2):102-12. PubMed ID: 18787345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic profiling of chromosome 1 in breast cancer: mapping of regions of gains and losses and identification of candidate genes on 1q.
    Orsetti B; Nugoli M; Cervera N; Lasorsa L; Chuchana P; Rougé C; Ursule L; Nguyen C; Bibeau F; Rodriguez C; Theillet C
    Br J Cancer; 2006 Nov; 95(10):1439-47. PubMed ID: 17060936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MicroRNA expression alterations are linked to tumorigenesis and non-neoplastic processes in pancreatic ductal adenocarcinoma.
    Szafranska AE; Davison TS; John J; Cannon T; Sipos B; Maghnouj A; Labourier E; Hahn SA
    Oncogene; 2007 Jun; 26(30):4442-52. PubMed ID: 17237814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide aberrations in pancreatic adenocarcinoma.
    Nowak NJ; Gaile D; Conroy JM; McQuaid D; Cowell J; Carter R; Goggins MG; Hruban RH; Maitra A
    Cancer Genet Cytogenet; 2005 Aug; 161(1):36-50. PubMed ID: 16080956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-wide analysis of DNA copy number alterations and gene expression in gastric cancer.
    Tsukamoto Y; Uchida T; Karnan S; Noguchi T; Nguyen LT; Tanigawa M; Takeuchi I; Matsuura K; Hijiya N; Nakada C; Kishida T; Kawahara K; Ito H; Murakami K; Fujioka T; Seto M; Moriyama M
    J Pathol; 2008 Dec; 216(4):471-82. PubMed ID: 18798223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of CD40 targeting miR-224 and miR-486 on the progression of pancreatic ductal adenocarcinomas.
    Mees ST; Mardin WA; Sielker S; Willscher E; Senninger N; Schleicher C; Colombo-Benkmann M; Haier J
    Ann Surg Oncol; 2009 Aug; 16(8):2339-50. PubMed ID: 19475450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Confirmation of DNA microarray-derived differentially expressed genes in pancreatic cancer using quantitative RT-PCR.
    Streit S; Michalski CW; Erkan M; Friess H; Kleeff J
    Pancreatology; 2009; 9(5):577-82. PubMed ID: 19657213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined microarray analysis of small cell lung cancer reveals altered apoptotic balance and distinct expression signatures of MYC family gene amplification.
    Kim YH; Girard L; Giacomini CP; Wang P; Hernandez-Boussard T; Tibshirani R; Minna JD; Pollack JR
    Oncogene; 2006 Jan; 25(1):130-8. PubMed ID: 16116477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-resolution copy number and gene expression microarray analyses of head and neck squamous cell carcinoma cell lines of tongue and larynx.
    Järvinen AK; Autio R; Kilpinen S; Saarela M; Leivo I; Grénman R; Mäkitie AA; Monni O
    Genes Chromosomes Cancer; 2008 Jun; 47(6):500-9. PubMed ID: 18314910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays.
    Pinkel D; Segraves R; Sudar D; Clark S; Poole I; Kowbel D; Collins C; Kuo WL; Chen C; Zhai Y; Dairkee SH; Ljung BM; Gray JW; Albertson DG
    Nat Genet; 1998 Oct; 20(2):207-11. PubMed ID: 9771718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of candidate tumour suppressor gene loci for Hodgkin and Reed-Sternberg cells by characterisation of homozygous deletions in classical Hodgkin lymphoma cell lines.
    Giefing M; Arnemann J; Martin-Subero JI; Nieländer I; Bug S; Hartmann S; Arnold N; Tiacci E; Frank M; Hansmann ML; Küppers R; Siebert R
    Br J Haematol; 2008 Sep; 142(6):916-24. PubMed ID: 18671701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.