These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 19078936)

  • 1. Pressure-polishing pipettes for improved patch-clamp recording.
    Johnson BE; Brown AL; Goodman MB
    J Vis Exp; 2008 Oct; (20):. PubMed ID: 19078936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pressure polishing: a method for re-shaping patch pipettes during fire polishing.
    Goodman MB; Lockery SR
    J Neurosci Methods; 2000 Jul; 100(1-2):13-5. PubMed ID: 11040361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Making patch-pipettes and sharp electrodes with a programmable puller.
    Brown AL; Johnson BE; Goodman MB
    J Vis Exp; 2008 Oct; (20):. PubMed ID: 19078940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A pressure-polishing set-up to fabricate patch pipettes that seal on virtually any membrane, yielding low access resistance and efficient intracellular perfusion.
    Benedusi M; Aquila M; Milani A; Rispoli G
    Eur Biophys J; 2011 Nov; 40(11):1215-23. PubMed ID: 21761372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dry beveling micropipettes using a computer hard drive.
    Canfield JG
    J Neurosci Methods; 2006 Nov; 158(1):19-21. PubMed ID: 16782203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cleaning patch-clamp pipettes for immediate reuse.
    Kolb I; Stoy WA; Rousseau EB; Moody OA; Jenkins A; Forest CR
    Sci Rep; 2016 Oct; 6():35001. PubMed ID: 27725751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pressure-polished borosilicate pipettes are "universal sealer" yielding low access resistance and efficient intracellular perfusion.
    Aquila M; Benedusi M; Fasoli A; Rispoli G
    Methods Mol Biol; 2014; 1183():279-89. PubMed ID: 25023316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A modified coaxial compound micropipette for extracellular iontophoresis and intracellular recording: fabrication, performance and theory.
    Remmers JE; Schultz SA; Wallace J; Takeda R; Haji A
    Jpn J Pharmacol; 1997 Oct; 75(2):161-9. PubMed ID: 9414031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A device for automated control of pipette internal pressure for patch-clamp recording.
    Heyward PM; Shipley MT
    J Neurosci Methods; 2003 Feb; 123(1):109-15. PubMed ID: 12581854
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Micromolded PDMS planar electrode allows patch clamp electrical recordings from cells.
    Klemic KG; Klemic JF; Reed MA; Sigworth FJ
    Biosens Bioelectron; 2002 Jun; 17(6-7):597-604. PubMed ID: 11959483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optopatcher--an electrode holder for simultaneous intracellular patch-clamp recording and optical manipulation.
    Katz Y; Yizhar O; Staiger J; Lampl I
    J Neurosci Methods; 2013 Mar; 214(1):113-7. PubMed ID: 23370312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid coating of glass-capillary microelectrodes for single-electrode voltage-clamp.
    Juusola M; Seyfarth EA; French AS
    J Neurosci Methods; 1997 Feb; 71(2):199-204. PubMed ID: 9128157
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane-pipette interactions underlie delayed voltage activation of mechanosensitive channels in Xenopus oocytes.
    Gil Z; Magleby KL; Silberberg SD
    Biophys J; 1999 Jun; 76(6):3118-27. PubMed ID: 10354436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Culturing and electrophysiology of cells on NRCC patch-clamp chips.
    Py C; Martina M; Monette R; Comas T; Denhoff MW; Luk C; Syed NI; Mealing G
    J Vis Exp; 2012 Feb; (60):. PubMed ID: 22348948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of quartz patch pipettes for low noise single channel recording.
    Levis RA; Rae JL
    Biophys J; 1993 Oct; 65(4):1666-77. PubMed ID: 7506069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facilitated giga-seal formation with a just originated glass surface.
    Böhle T; Benndorf K
    Pflugers Arch; 1994 Jul; 427(5-6):487-91. PubMed ID: 7971147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum dot-based multiphoton fluorescent pipettes for targeted neuronal electrophysiology.
    Andrásfalvy BK; Galiñanes GL; Huber D; Barbic M; Macklin JJ; Susumu K; Delehanty JB; Huston AL; Makara JK; Medintz IL
    Nat Methods; 2014 Dec; 11(12):1237-1241. PubMed ID: 25326662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Voltage-induced membrane displacement in patch pipettes activates mechanosensitive channels.
    Gil Z; Silberberg SD; Magleby KL
    Proc Natl Acad Sci U S A; 1999 Dec; 96(25):14594-9. PubMed ID: 10588750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Whole cell patch clamp recording performed on a planar glass chip.
    Fertig N; Blick RH; Behrends JC
    Biophys J; 2002 Jun; 82(6):3056-62. PubMed ID: 12023228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lipid Bilayer Experiments with Contact Bubble Bilayers for Patch-Clampers.
    Iwamoto M; Oiki S
    J Vis Exp; 2019 Jan; (143):. PubMed ID: 30735182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.