These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 19078940)

  • 1. Making patch-pipettes and sharp electrodes with a programmable puller.
    Brown AL; Johnson BE; Goodman MB
    J Vis Exp; 2008 Oct; (20):. PubMed ID: 19078940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pressure-polishing pipettes for improved patch-clamp recording.
    Johnson BE; Brown AL; Goodman MB
    J Vis Exp; 2008 Oct; (20):. PubMed ID: 19078936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dry beveling micropipettes using a computer hard drive.
    Canfield JG
    J Neurosci Methods; 2006 Nov; 158(1):19-21. PubMed ID: 16782203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pressure polishing: a method for re-shaping patch pipettes during fire polishing.
    Goodman MB; Lockery SR
    J Neurosci Methods; 2000 Jul; 100(1-2):13-5. PubMed ID: 11040361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cleaning patch-clamp pipettes for immediate reuse.
    Kolb I; Stoy WA; Rousseau EB; Moody OA; Jenkins A; Forest CR
    Sci Rep; 2016 Oct; 6():35001. PubMed ID: 27725751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid coating of glass-capillary microelectrodes for single-electrode voltage-clamp.
    Juusola M; Seyfarth EA; French AS
    J Neurosci Methods; 1997 Feb; 71(2):199-204. PubMed ID: 9128157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quartz glass pipette puller operating with a regulated oxy-hydrogen burner.
    Dudel J; Hallermann S; Heckmann M
    Pflugers Arch; 2000 Dec; 441(2-3):175-80. PubMed ID: 11211101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multimodal in vivo brain electrophysiology with integrated glass microelectrodes.
    Hunt DL; Lai C; Smith RD; Lee AK; Harris TD; Barbic M
    Nat Biomed Eng; 2019 Sep; 3(9):741-753. PubMed ID: 30936430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micromolded PDMS planar electrode allows patch clamp electrical recordings from cells.
    Klemic KG; Klemic JF; Reed MA; Sigworth FJ
    Biosens Bioelectron; 2002 Jun; 17(6-7):597-604. PubMed ID: 11959483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The use of quartz patch pipettes for low noise single channel recording.
    Levis RA; Rae JL
    Biophys J; 1993 Oct; 65(4):1666-77. PubMed ID: 7506069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A modified coaxial compound micropipette for extracellular iontophoresis and intracellular recording: fabrication, performance and theory.
    Remmers JE; Schultz SA; Wallace J; Takeda R; Haji A
    Jpn J Pharmacol; 1997 Oct; 75(2):161-9. PubMed ID: 9414031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membrane-pipette interactions underlie delayed voltage activation of mechanosensitive channels in Xenopus oocytes.
    Gil Z; Magleby KL; Silberberg SD
    Biophys J; 1999 Jun; 76(6):3118-27. PubMed ID: 10354436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pressure-polished borosilicate pipettes are "universal sealer" yielding low access resistance and efficient intracellular perfusion.
    Aquila M; Benedusi M; Fasoli A; Rispoli G
    Methods Mol Biol; 2014; 1183():279-89. PubMed ID: 25023316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A modified horizontal capillary puller for fabrication of patch-clamp pipettes.
    Mealing GA; Schwartz JL
    Brain Res Bull; 1989 May; 22(5):913-5. PubMed ID: 2765950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detachable glass microelectrodes for recording action potentials in active moving organs.
    Barbic M; Moreno A; Harris TD; Kay MW
    Am J Physiol Heart Circ Physiol; 2017 Jun; 312(6):H1248-H1259. PubMed ID: 28476925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optopatcher--an electrode holder for simultaneous intracellular patch-clamp recording and optical manipulation.
    Katz Y; Yizhar O; Staiger J; Lampl I
    J Neurosci Methods; 2013 Mar; 214(1):113-7. PubMed ID: 23370312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glass-funnel technique for the recording of membrane currents and intracellular perfusion of Xenopus oocytes.
    Shuba YM; Naidenov VG; Morad M
    Pflugers Arch; 1996 Jul; 432(3):562-70. PubMed ID: 8766018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A pressure-polishing set-up to fabricate patch pipettes that seal on virtually any membrane, yielding low access resistance and efficient intracellular perfusion.
    Benedusi M; Aquila M; Milani A; Rispoli G
    Eur Biophys J; 2011 Nov; 40(11):1215-23. PubMed ID: 21761372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum dot-based multiphoton fluorescent pipettes for targeted neuronal electrophysiology.
    Andrásfalvy BK; Galiñanes GL; Huber D; Barbic M; Macklin JJ; Susumu K; Delehanty JB; Huston AL; Makara JK; Medintz IL
    Nat Methods; 2014 Dec; 11(12):1237-1241. PubMed ID: 25326662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An air-molding technique for fabricating PDMS planar patch-clamp electrodes.
    Klemic KG; Klemic JF; Sigworth FJ
    Pflugers Arch; 2005 Mar; 449(6):564-72. PubMed ID: 15578213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.