These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
243 related articles for article (PubMed ID: 19079343)
1. Cyclin D1 repressor domain mediates proliferation and survival in prostate cancer. Schiewer MJ; Morey LM; Burd CJ; Liu Y; Merry DE; Ho SM; Knudsen KE Oncogene; 2009 Feb; 28(7):1016-27. PubMed ID: 19079343 [TBL] [Abstract][Full Text] [Related]
2. Cyclin D1b variant influences prostate cancer growth through aberrant androgen receptor regulation. Burd CJ; Petre CE; Morey LM; Wang Y; Revelo MP; Haiman CA; Lu S; Fenoglio-Preiser CM; Li J; Knudsen ES; Wong J; Knudsen KE Proc Natl Acad Sci U S A; 2006 Feb; 103(7):2190-5. PubMed ID: 16461912 [TBL] [Abstract][Full Text] [Related]
3. Cyclin D3 action in androgen receptor regulation and prostate cancer. Olshavsky NA; Groh EM; Comstock CE; Morey LM; Wang Y; Revelo MP; Burd C; Meller J; Knudsen KE Oncogene; 2008 May; 27(22):3111-21. PubMed ID: 18084330 [TBL] [Abstract][Full Text] [Related]
4. Androgen Receptor-Mediated Growth Suppression of HPr-1AR and PC3-Lenti-AR Prostate Epithelial Cells. Kim YC; Chen C; Bolton EC PLoS One; 2015; 10(9):e0138286. PubMed ID: 26372468 [TBL] [Abstract][Full Text] [Related]
5. Specificity of cyclin D1 for androgen receptor regulation. Petre-Draviam CE; Cook SL; Burd CJ; Marshall TW; Wetherill YB; Knudsen KE Cancer Res; 2003 Aug; 63(16):4903-13. PubMed ID: 12941814 [TBL] [Abstract][Full Text] [Related]
6. Increased Akt signaling resulting from the loss of androgen responsiveness in prostate cancer. Dulinska-Litewka J; McCubrey JA; Laidler P Curr Med Chem; 2013; 20(1):144-57. PubMed ID: 23033951 [TBL] [Abstract][Full Text] [Related]
7. Androgen receptor as a regulator of ZEB2 expression and its implications in epithelial-to-mesenchymal transition in prostate cancer. Jacob S; Nayak S; Fernandes G; Barai RS; Menon S; Chaudhari UK; Kholkute SD; Sachdeva G Endocr Relat Cancer; 2014 Jun; 21(3):473-86. PubMed ID: 24812058 [TBL] [Abstract][Full Text] [Related]
8. Targeting the BAF57 SWI/SNF subunit in prostate cancer: a novel platform to control androgen receptor activity. Link KA; Balasubramaniam S; Sharma A; Comstock CE; Godoy-Tundidor S; Powers N; Cao KH; Haelens A; Claessens F; Revelo MP; Knudsen KE Cancer Res; 2008 Jun; 68(12):4551-8. PubMed ID: 18559499 [TBL] [Abstract][Full Text] [Related]
9. Resveratrol regulates the PTEN/AKT pathway through androgen receptor-dependent and -independent mechanisms in prostate cancer cell lines. Wang Y; Romigh T; He X; Orloff MS; Silverman RH; Heston WD; Eng C Hum Mol Genet; 2010 Nov; 19(22):4319-29. PubMed ID: 20729295 [TBL] [Abstract][Full Text] [Related]
10. Sin1 promotes proliferation and invasion of prostate cancer cells by modulating mTORC2-AKT and AR signaling cascades. Huang Y; Feng G; Cai J; Peng Q; Yang Z; Yan C; Yang L; Wang Z Life Sci; 2020 May; 248():117449. PubMed ID: 32088212 [TBL] [Abstract][Full Text] [Related]
11. Prohibitin and the SWI/SNF ATPase subunit BRG1 are required for effective androgen antagonist-mediated transcriptional repression of androgen receptor-regulated genes. Dai Y; Ngo D; Jacob J; Forman LW; Faller DV Carcinogenesis; 2008 Sep; 29(9):1725-33. PubMed ID: 18487222 [TBL] [Abstract][Full Text] [Related]
12. Manipulating prohibitin levels provides evidence for an in vivo role in androgen regulation of prostate tumours. Dart DA; Spencer-Dene B; Gamble SC; Waxman J; Bevan CL Endocr Relat Cancer; 2009 Dec; 16(4):1157-69. PubMed ID: 19635783 [TBL] [Abstract][Full Text] [Related]
13. A regulatory feedback loop between Ca2+/calmodulin-dependent protein kinase kinase 2 (CaMKK2) and the androgen receptor in prostate cancer progression. Karacosta LG; Foster BA; Azabdaftari G; Feliciano DM; Edelman AM J Biol Chem; 2012 Jul; 287(29):24832-43. PubMed ID: 22654108 [TBL] [Abstract][Full Text] [Related]
14. The tumor suppressor ING1b is a novel corepressor for the androgen receptor and induces cellular senescence in prostate cancer cells. Esmaeili M; Jennek S; Ludwig S; Klitzsch A; Kraft F; Melle C; Baniahmad A J Mol Cell Biol; 2016 Jun; 8(3):207-20. PubMed ID: 26993046 [TBL] [Abstract][Full Text] [Related]
15. Cyclin D1 is a selective modifier of androgen-dependent signaling and androgen receptor function. Comstock CES; Augello MA; Schiewer MJ; Karch J; Burd CJ; Ertel A; Knudsen ES; Jessen WJ; Aronow BJ; Knudsen KE J Biol Chem; 2011 Mar; 286(10):8117-8127. PubMed ID: 21212260 [TBL] [Abstract][Full Text] [Related]
16. The role of sLZIP in cyclin D3-mediated negative regulation of androgen receptor transactivation and its involvement in prostate cancer. Kim Y; Kim J; Jang SW; Ko J Oncogene; 2015 Jan; 34(2):226-36. PubMed ID: 24441043 [TBL] [Abstract][Full Text] [Related]
17. p68/DdX5 supports β-catenin & RNAP II during androgen receptor mediated transcription in prostate cancer. Clark EL; Hadjimichael C; Temperley R; Barnard A; Fuller-Pace FV; Robson CN PLoS One; 2013; 8(1):e54150. PubMed ID: 23349811 [TBL] [Abstract][Full Text] [Related]
18. Inhibition of MAPK-signaling pathway promotes the interaction of the corepressor SMRT with the human androgen receptor and mediates repression of prostate cancer cell growth in the presence of antiandrogens. Eisold M; Asim M; Eskelinen H; Linke T; Baniahmad A J Mol Endocrinol; 2009 May; 42(5):429-35. PubMed ID: 19223455 [TBL] [Abstract][Full Text] [Related]
19. Androgen receptor remains critical for cell-cycle progression in androgen-independent CWR22 prostate cancer cells. Yuan X; Li T; Wang H; Zhang T; Barua M; Borgesi RA; Bubley GJ; Lu ML; Balk SP Am J Pathol; 2006 Aug; 169(2):682-96. PubMed ID: 16877366 [TBL] [Abstract][Full Text] [Related]
20. SGK3 is an androgen-inducible kinase promoting prostate cancer cell proliferation through activation of p70 S6 kinase and up-regulation of cyclin D1. Wang Y; Zhou D; Chen S Mol Endocrinol; 2014 Jun; 28(6):935-48. PubMed ID: 24739041 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]