These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 19079507)
1. Spectral analysis and control to obtain sub-5 fs pulses by femtosecond filamentation. Wang Z; Liu J; Li R; Xu Z Opt Lett; 2008 Dec; 33(24):2964-6. PubMed ID: 19079507 [TBL] [Abstract][Full Text] [Related]
2. Supercontinuum generation and pulse compression from gas filamentation of femtosecond laser pulses with different durations. Wang Z; Liu J; Li R; Xu Z Opt Express; 2009 Aug; 17(16):13841-50. PubMed ID: 19654790 [TBL] [Abstract][Full Text] [Related]
3. Sub-50-fs laser retinal damage thresholds in primate eyes with group velocity dispersion, self-focusing and low-density plasmas. Cain CP; Thomas RJ; Noojin GD; Stolarski DJ; Kennedy PK; Buffington GD; Rockwell BA Graefes Arch Clin Exp Ophthalmol; 2005 Feb; 243(2):101-12. PubMed ID: 15241612 [TBL] [Abstract][Full Text] [Related]
4. Sub-10-fs supercontinuum radiation generated by filamentation of few-cycle 800 nm pulses in argon. Trushin SA; Kosma K; Fuss W; Schmid WE Opt Lett; 2007 Aug; 32(16):2432-4. PubMed ID: 17700809 [TBL] [Abstract][Full Text] [Related]
5. Generation of high-energy, sub-20-fs pulses in the deep ultraviolet by using spectral broadening during filamentation in argon. Ghotbi M; Trabs P; Beutler M Opt Lett; 2011 Feb; 36(4):463-5. PubMed ID: 21326423 [TBL] [Abstract][Full Text] [Related]
6. Generation of 12 fs deep-ultraviolet pulses by four-wave mixing through filamentation in neon gas. Fuji T; Horio T; Suzuki T Opt Lett; 2007 Sep; 32(17):2481-3. PubMed ID: 17767278 [TBL] [Abstract][Full Text] [Related]
7. Laser chirp effect on femtosecond laser filamentation generated for pulse compression. Park J; Lee JH; Nam CH Opt Express; 2008 Mar; 16(7):4465-70. PubMed ID: 18542543 [TBL] [Abstract][Full Text] [Related]
8. Intense self-compressed, self-phase-stabilized few-cycle pulses at 2 microm from an optical filament. Hauri CP; Lopez-Martens RB; Blaga CI; Schultz KD; Cryan J; Chirla R; Colosimo P; Doumy G; March AM; Roedig C; Sistrunk E; Tate J; Wheeler J; Dimauro LF; Power EP Opt Lett; 2007 Apr; 32(7):868-70. PubMed ID: 17339964 [TBL] [Abstract][Full Text] [Related]
9. Beam delivery and pulse compression to sub-50 fs of a modelocked thin-disk laser in a gas-filled Kagome-type HC-PCF fiber. Emaury F; Dutin CF; Saraceno CJ; Trant M; Heckl OH; Wang YY; Schriber C; Gerome F; Südmeyer T; Benabid F; Keller U Opt Express; 2013 Feb; 21(4):4986-94. PubMed ID: 23482031 [TBL] [Abstract][Full Text] [Related]
10. Sub-20-fs pulses tunable across the visible from a blue-pumped single-pass noncollinear parametric converter. Wilhelm T; Piel J; Riedle E Opt Lett; 1997 Oct; 22(19):1494-6. PubMed ID: 18188279 [TBL] [Abstract][Full Text] [Related]
11. Self-compression by femtosecond pulse filamentation: experiments versus numerical simulations. Skupin S; Stibenz G; Bergé L; Lederer F; Sokollik T; Schnürer M; Zhavoronkov N; Steinmeyer G Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 2):056604. PubMed ID: 17280003 [TBL] [Abstract][Full Text] [Related]
12. Experimental and theoretical investigation of a multipass, plane mirror, femtosecond dye laser amplifier. Wittmann M; Penzkofer A; Gössl G Appl Opt; 1995 Aug; 34(24):5287-96. PubMed ID: 21060347 [TBL] [Abstract][Full Text] [Related]
13. Simultaneous generation of sub-5-femtosecond 400 nm and 800 nm pulses for attosecond extreme ultraviolet pump-probe spectroscopy. Chang HT; Zürch M; Kraus PM; Borja LJ; Neumark DM; Leone SR Opt Lett; 2016 Nov; 41(22):5365-5368. PubMed ID: 27842133 [TBL] [Abstract][Full Text] [Related]
14. Distinguishing the nonlinear propagation regimes of vortex femtosecond pulses in fused silica by evaluating the broadened spectrum. Li D; Liang W; Li D; Ji L; Yan B; Chang J; Xi T; Zhang L; Cai Y; Hao Z Opt Express; 2023 Sep; 31(20):32752-32760. PubMed ID: 37859070 [TBL] [Abstract][Full Text] [Related]
15. Highly efficient femtosecond pulse stretching by tailoring cavity dispersion in erbium fiber lasers with an intracavity short-pass edge filter. Chen NK; Liu FZ; Chuang HP; Lai Y; Yang SD; Lin JW; Liaw SK; Chang YC; Huang CB; Chi S Opt Express; 2011 Aug; 19(17):15879-84. PubMed ID: 21934950 [TBL] [Abstract][Full Text] [Related]
16. Picosecond pulse compression by modulation of intensity envelope in a gas-filled hollow-core fiber. Zhao R; Wang D; Zhao Y; Leng Y; Li R Opt Express; 2017 Oct; 25(22):27795-27805. PubMed ID: 29092249 [TBL] [Abstract][Full Text] [Related]
17. High-energy, sub-30 fs near-IR pulses from a broadband optical parametric amplifier based on collinear interaction in BiB(3)O(6). Ghotbi M; Beutler M; Petrov V; Gaydardzhiev A; Noack F Opt Lett; 2009 Mar; 34(5):689-91. PubMed ID: 19252594 [TBL] [Abstract][Full Text] [Related]
18. Self-compression of millijoule pulses to 7.8 fs duration in a white-light filament. Stibenz G; Zhavoronkov N; Steinmeyer G Opt Lett; 2006 Jan; 31(2):274-6. PubMed ID: 16441054 [TBL] [Abstract][Full Text] [Related]
19. Generation of 200-microJ, sub-25-fs deep-UV pulses using a noble-gas-filled hollow fiber. Nagy T; Simon P Opt Lett; 2009 Aug; 34(15):2300-2. PubMed ID: 19649077 [TBL] [Abstract][Full Text] [Related]
20. Femtosecond laser pulse generation with self-similar amplification of picosecond laser pulses. Song H; Liu B; Chen W; Li Y; Song Y; Wang S; Chai L; Wang C; Hu M Opt Express; 2018 Oct; 26(20):26411-26421. PubMed ID: 30469729 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]