These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 19079520)

  • 1. Reversal of the optical force in a plasmonic trap.
    Huang L; Martin OJ
    Opt Lett; 2008 Dec; 33(24):3001-3. PubMed ID: 19079520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studying the different coupling regimes for a plasmonic particle in a plasmonic trap.
    Kim J; Martin OJF
    Opt Express; 2019 Dec; 27(26):38670-38682. PubMed ID: 31878630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the substrate contribution to the back action trapping of plasmonic nanoparticles on resonant near-field traps in plasmonic films.
    Padhy P; Zaman MA; Hansen P; Hesselink L
    Opt Express; 2017 Oct; 25(21):26198-26214. PubMed ID: 29041280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical forces in coupled plasmonic nanosystems: Near field and far field interaction regimes.
    Lamothe E; Lévêque G; Martin OJ
    Opt Express; 2007 Jul; 15(15):9631-44. PubMed ID: 19547312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-physics simulations and experimental comparisons for the optical and electrical forces acting on a silica nanoparticle trapped by a double-nanohole plasmonic nanopore sensor.
    Asadzadeh H; Renkes S; Kim M; Alexandrakis G
    Sens Biosensing Res; 2023 Aug; 41():. PubMed ID: 39239382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gold cauldrons as efficient candidates for plasmonic tweezers.
    Khosravi MA; Aqhili A; Vasini S; Khosravi MH; Darbari S; Hajizadeh F
    Sci Rep; 2020 Nov; 10(1):19356. PubMed ID: 33168879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmonic nanobilliards: controlling nanoparticle movement using forces induced by swift electrons.
    Batson PE; Reyes-Coronado A; Barrera RG; Rivacoba A; Echenique PM; Aizpurua J
    Nano Lett; 2011 Aug; 11(8):3388-93. PubMed ID: 21770372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunable optical forces enhanced by plasmonic modes hybridization in optical trapping of gold nanorods with plasmonic nanocavity.
    Huang WH; Li SF; Xu HT; Xiang ZX; Long YB; Deng HD
    Opt Express; 2018 Mar; 26(5):6202-6213. PubMed ID: 29529812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Why single-beam optical tweezers trap gold nanowires in three dimensions.
    Yan Z; Pelton M; Vigderman L; Zubarev ER; Scherer NF
    ACS Nano; 2013 Oct; 7(10):8794-800. PubMed ID: 24041038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmonic trapping and tuning of a gold nanoparticle dimer.
    Shen Z; Su L
    Opt Express; 2016 Mar; 24(5):4801-4811. PubMed ID: 29092308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmonic interactions and optical forces between au bipyramidal nanoparticle dimers.
    Nome RA; Guffey MJ; Scherer NF; Gray SK
    J Phys Chem A; 2009 Apr; 113(16):4408-15. PubMed ID: 19267445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical forces on metallic nanoparticles induced by a photonic nanojet.
    Cui X; Erni D; Hafner C
    Opt Express; 2008 Sep; 16(18):13560-8. PubMed ID: 18772965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fano resonances in plasmonic nanoparticle aggregates.
    Mirin NA; Bao K; Nordlander P
    J Phys Chem A; 2009 Apr; 113(16):4028-34. PubMed ID: 19371111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Escape forces and trajectories in optical tweezers and their effect on calibration.
    Bui AA; Stilgoe AB; Khatibzadeh N; Nieminen TA; Berns MW; Rubinsztein-Dunlop H
    Opt Express; 2015 Sep; 23(19):24317-30. PubMed ID: 26406637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Double Fano resonances in plasmonic nanocross molecules and magnetic plasmon propagation.
    Li GZ; Li Q; Wu LJ
    Nanoscale; 2015 Dec; 7(47):19914-20. PubMed ID: 26580687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer.
    Ndukaife JC; Kildishev AV; Nnanna AG; Shalaev VM; Wereley ST; Boltasseva A
    Nat Nanotechnol; 2016 Jan; 11(1):53-9. PubMed ID: 26524398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integration of plasmonic trapping in a microfluidic environment.
    Huang L; Maerkl SJ; Martin OJ
    Opt Express; 2009 Apr; 17(8):6018-24. PubMed ID: 19365421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In-plane near-field optical barrier on a chip.
    Padhy P; Zaman MA; Hesselink L
    Opt Lett; 2019 Apr; 44(8):2061-2064. PubMed ID: 30985811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanometric control of the distance between plasmonic nanoparticles using optical forces.
    Sepúlveda B; Alegret J; Käll M
    Opt Express; 2007 Oct; 15(22):14914-20. PubMed ID: 19550770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical trapping and manipulation of plasmonic nanoparticles: fundamentals, applications, and perspectives.
    Urban AS; Carretero-Palacios S; Lutich AA; Lohmüller T; Feldmann J; Jäckel F
    Nanoscale; 2014 May; 6(9):4458-74. PubMed ID: 24664273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.