These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 19079593)

  • 41. Proangiogenic effect of angiotensin-converting enzyme inhibition is mediated by the bradykinin B(2) receptor pathway.
    Silvestre JS; Bergaya S; Tamarat R; Duriez M; Boulanger CM; Levy BI
    Circ Res; 2001 Oct; 89(8):678-83. PubMed ID: 11597990
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The effect of bradykinin on coronary flow and its potentiation by SH-containing ACE-inhibitors.
    de Graeff PA; van Gilst WH
    Agents Actions Suppl; 1992; 38 ( Pt 3)():110-8. PubMed ID: 1462853
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Angiotensin II inhibits endothelial cell motility through an AT1-dependent oxidant-sensitive decrement of nitric oxide availability.
    Desideri G; Bravi MC; Tucci M; Croce G; Marinucci MC; Santucci A; Alesse E; Ferri C
    Arterioscler Thromb Vasc Biol; 2003 Jul; 23(7):1218-23. PubMed ID: 12763763
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Local potentiation of bradykinin-induced vasodilation by converting-enzyme inhibition in isolated coronary arteries.
    Auch-Schwelk W; Bossaller C; Claus M; Graf K; Gräfe M; Fleck E
    J Cardiovasc Pharmacol; 1992; 20 Suppl 9():S62-7. PubMed ID: 1282632
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Ursodeoxycholic acid inhibits endothelin-1 production in human vascular endothelial cells.
    Ma J; Iida H; Jo T; Takano H; Oonuma H; Morita T; Toyo-Oka T; Omata M; Nagai R; Okuda Y; Yamada N; Nakajima T
    Eur J Pharmacol; 2004 Nov; 505(1-3):67-74. PubMed ID: 15556138
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cardiac nitric oxide production due to angiotensin-converting enzyme inhibition decreases beta-adrenergic myocardial contractility in patients with dilated cardiomyopathy.
    Wittstein IS; Kass DA; Pak PH; Maughan WL; Fetics B; Hare JM
    J Am Coll Cardiol; 2001 Aug; 38(2):429-35. PubMed ID: 11499734
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Nitric oxide up-regulates endothelial expression of angiotensin II type 2 receptors.
    Dao VT; Medini S; Bisha M; Balz V; Suvorava T; Bas M; Kojda G
    Biochem Pharmacol; 2016 Jul; 112():24-36. PubMed ID: 27235748
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of captopril on cardiac and renal damage, and metabolic alterations in the nitric oxide-deficient hypertensive rat.
    Khattab MM; Mostafa A; Al-Shabanah O
    Kidney Blood Press Res; 2005; 28(4):243-50. PubMed ID: 16220007
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Vasopeptidase inhibition exhibits endothelial protection in salt-induced hypertension.
    Quaschning T; d'Uscio LV; Shaw S; Lüscher TF
    Hypertension; 2001 Apr; 37(4):1108-13. PubMed ID: 11304511
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The effect of angiotensin-converting enzyme inhibition on endothelial function and oxidant stress.
    Scribner AW; Loscalzo J; Napoli C
    Eur J Pharmacol; 2003 Dec; 482(1-3):95-9. PubMed ID: 14660009
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Free radical scavenging properties of alacepril metabolites and lisinopril.
    Noda Y; Mori A; Packer L
    Res Commun Mol Pathol Pharmacol; 1997 May; 96(2):125-36. PubMed ID: 9226747
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Regulation of endothelin-converting enzyme-1 (ECE-1) by the calcimimetic R-568.
    Martínez-Miguel P; Medrano-Andrés D; Lopes-Martín V; Arribas-Gómez I; Rodríguez-Puyol M; Rodríguez-Puyol D; López-Ongil S
    Pharmacol Res; 2013 Oct; 76():106-18. PubMed ID: 23911580
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Novel mode of action of angiotensin I converting enzyme inhibitors: direct activation of bradykinin B1 receptor.
    Ignjatovic T; Tan F; Brovkovych V; Skidgel RA; Erdös EG
    J Biol Chem; 2002 May; 277(19):16847-52. PubMed ID: 11880373
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Release of nitric oxide from glyceryl trinitrate by captopril but not enalaprilat: in vitro and in vivo studies.
    Salvemini D; Pistelli A; Mollace V
    Br J Pharmacol; 1993 Jun; 109(2):430-6. PubMed ID: 8358544
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Converting enzyme inhibitors and the role of the sulfhydryl group in the potentiation of exo- and endogenous nitrovasodilators.
    van Gilst WH; de Graeff PA; de Leeuw MJ; Scholtens E; Wesseling H
    J Cardiovasc Pharmacol; 1991 Sep; 18(3):429-36. PubMed ID: 1720843
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Impairment of endothelium-dependent relaxation of rat aortas by homocysteine thiolactone and attenuation by captopril.
    Liu YH; You Y; Song T; Wu SJ; Liu LY
    J Cardiovasc Pharmacol; 2007 Aug; 50(2):155-61. PubMed ID: 17703131
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Inhibition by angiotensin converting enzyme inhibitors of endothelin secretion from cultured human endothelial cells.
    Yoshida H; Nakamura M
    Life Sci; 1992; 50(22):PL195-200. PubMed ID: 1316980
    [TBL] [Abstract][Full Text] [Related]  

  • 58. In vivo inhibition of nitric oxide synthesis does not depend on renin-angiotensin system activation.
    Zappellini A; Teixeira SA; Muscará MN; Zatz R; Antunes E; De Nucci G
    Eur J Pharmacol; 1996 Dec; 317(2-3):285-91. PubMed ID: 8997612
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Nitric oxide modulates captopril-mediated angiotensin-converting enzyme inhibition in porcine iliac arteries.
    Persson K; Andersson RG
    Eur J Pharmacol; 1999 Nov; 385(1):21-7. PubMed ID: 10594341
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Vascular protection: current possibilities and future perspectives.
    Lüscher TF
    Int J Clin Pract Suppl; 2001 Jan; (117):3-6. PubMed ID: 11715356
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.