BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 19079637)

  • 1. Transition State Structure for the Hydrolysis of NAD Catalyzed by Diphtheria Toxin.
    Berti PJ; Blanke SR; Schramm VL
    J Am Chem Soc; 1997 Dec; 119(50):12079-12088. PubMed ID: 19079637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transition state structure for ADP-ribosylation of eukaryotic elongation factor 2 catalyzed by diphtheria toxin.
    Parikh SL; Schramm VL
    Biochemistry; 2004 Feb; 43(5):1204-12. PubMed ID: 14756556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic isotope effect characterization of the transition state for oxidized nicotinamide adenine dinucleotide hydrolysis by pertussis toxin.
    Scheuring J; Schramm VL
    Biochemistry; 1997 Apr; 36(15):4526-34. PubMed ID: 9109661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pertussis toxin: transition state analysis for ADP-ribosylation of G-protein peptide alphai3C20.
    Scheuring J; Schramm VL
    Biochemistry; 1997 Jul; 36(27):8215-23. PubMed ID: 9204866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibitors of ADP-ribosylating bacterial toxins based on oxacarbenium ion character at their transition states.
    Zhou GC; Parikh SL; Tyler PC; Evans GB; Furneaux RH; Zubkova OV; Benjes PA; Schramm VL
    J Am Chem Soc; 2004 May; 126(18):5690-8. PubMed ID: 15125661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transition state of ADP-ribosylation of acetyllysine catalyzed by Archaeoglobus fulgidus Sir2 determined by kinetic isotope effects and computational approaches.
    Cen Y; Sauve AA
    J Am Chem Soc; 2010 Sep; 132(35):12286-98. PubMed ID: 20718419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transition state structure of 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase from Escherichia coli and its similarity to transition state analogues.
    Singh V; Lee JE; Núñez S; Howell PL; Schramm VL
    Biochemistry; 2005 Sep; 44(35):11647-59. PubMed ID: 16128565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transition-state structure of human 5'-methylthioadenosine phosphorylase.
    Singh V; Schramm VL
    J Am Chem Soc; 2006 Nov; 128(45):14691-6. PubMed ID: 17090056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transition-state analysis of 2-O-acetyl-ADP-ribose hydrolysis by human macrodomain 1.
    Hirsch BM; Burgos ES; Schramm VL
    ACS Chem Biol; 2014 Oct; 9(10):2255-62. PubMed ID: 25051211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing the transition states of four glucoside hydrolyses with 13C kinetic isotope effects measured at natural abundance by NMR spectroscopy.
    Lee JK; Bain AD; Berti PJ
    J Am Chem Soc; 2004 Mar; 126(12):3769-76. PubMed ID: 15038730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of diphtheria toxin bound to nicotinamide adenine dinucleotide.
    Bell CE; Eisenberg D
    Biochemistry; 1996 Jan; 35(4):1137-49. PubMed ID: 8573568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transition-state structure for the ADP-ribosylation of recombinant Gialpha1 subunits by pertussis toxin.
    Scheuring J; Berti PJ; Schramm VL
    Biochemistry; 1998 Mar; 37(9):2748-58. PubMed ID: 9485425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transition state analysis of thymidine hydrolysis by human thymidine phosphorylase.
    Schwartz PA; Vetticatt MJ; Schramm VL
    J Am Chem Soc; 2010 Sep; 132(38):13425-33. PubMed ID: 20804144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transition-state structures for N-glycoside hydrolysis of AMP by acid and by AMP nucleosidase in the presence and absence of allosteric activator.
    Mentch F; Parkin DW; Schramm VL
    Biochemistry; 1987 Feb; 26(3):921-30. PubMed ID: 3552038
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determining the transition-state structure for different SN2 reactions using experimental nucleophile carbon and secondary alpha-deuterium kinetic isotope effects and theory.
    Westaway KC; Fang YR; MacMillar S; Matsson O; Poirier RA; Islam SM
    J Phys Chem A; 2008 Oct; 112(41):10264-73. PubMed ID: 18816038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Active-site mutations of the diphtheria toxin catalytic domain: role of histidine-21 in nicotinamide adenine dinucleotide binding and ADP-ribosylation of elongation factor 2.
    Blanke SR; Huang K; Wilson BA; Papini E; Covacci A; Collier RJ
    Biochemistry; 1994 May; 33(17):5155-61. PubMed ID: 8172890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recycling nicotinamide. The transition-state structure of human nicotinamide phosphoribosyltransferase.
    Burgos ES; Vetticatt MJ; Schramm VL
    J Am Chem Soc; 2013 Mar; 135(9):3485-93. PubMed ID: 23373462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of diphtheria toxin bound to nicotinamide adenine dinucleotide.
    Bell CE; Eisenberg D
    Adv Exp Med Biol; 1997; 419():35-43. PubMed ID: 9193634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active-site mutations of diphtheria toxin: role of tyrosine-65 in NAD binding and ADP-ribosylation.
    Blanke SR; Huang K; Collier RJ
    Biochemistry; 1994 Dec; 33(51):15494-500. PubMed ID: 7803411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insights into the mechanism of bovine CD38/NAD+glycohydrolase from the X-ray structures of its Michaelis complex and covalently-trapped intermediates.
    Egea PF; Muller-Steffner H; Kuhn I; Cakir-Kiefer C; Oppenheimer NJ; Stroud RM; Kellenberger E; Schuber F
    PLoS One; 2012; 7(4):e34918. PubMed ID: 22529956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.