These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 19079767)

  • 1. Operational Regimes and Physics Present in Optoelectronic Tweezers.
    Valley JK; Jamshidi A; Ohta AT; Hsu HY; Wu MC
    J Microelectromech Syst; 2008 Apr; 17(2):342-350. PubMed ID: 19079767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Manipulating and assembling metallic beads with Optoelectronic Tweezers.
    Zhang S; Juvert J; Cooper JM; Neale SL
    Sci Rep; 2016 Sep; 6():32840. PubMed ID: 27599445
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental investigation of electrostatic particle-particle interactions in optoelectronic tweezers.
    Hwang H; Kim JJ; Park JK
    J Phys Chem B; 2008 Aug; 112(32):9903-8. PubMed ID: 18646802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Utilization of plasmonic and photonic crystal nanostructures for enhanced micro- and nanoparticle manipulation.
    Simmons CS; Knouf EC; Tewari M; Lin LY
    J Vis Exp; 2011 Sep; (55):. PubMed ID: 21988841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Patterned Optoelectronic Tweezers: A New Scheme for Selecting, Moving, and Storing Dielectric Particles and Cells.
    Zhang S; Shakiba N; Chen Y; Zhang Y; Tian P; Singh J; Chamberlain MD; Satkauskas M; Flood AG; Kherani NP; Yu S; Zandstra PW; Wheeler AR
    Small; 2018 Nov; 14(45):e1803342. PubMed ID: 30307718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Size-scaling effects for microparticles and cells manipulated by optoelectronic tweezers.
    Zhang S; Li W; Elsayed M; Tian P; Clark AW; Wheeler AR; Neale SL
    Opt Lett; 2019 Sep; 44(17):4171-4174. PubMed ID: 31465355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phototransistor-based optoelectronic tweezers for dynamic cell manipulation in cell culture media.
    Hsu HY; Ohta AT; Chiou PY; Jamshidi A; Neale SL; Wu MC
    Lab Chip; 2010 Jan; 10(2):165-72. PubMed ID: 20066243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical Dielectrophoretic (DEP) Manipulation of Oil-Immersed Aqueous Droplets on a Plasmonic-Enhanced Photoconductive Surface.
    Thio SK; Park SY
    Micromachines (Basel); 2022 Jan; 13(1):. PubMed ID: 35056277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dielectrophoresis in microchips containing arrays of insulating posts: theoretical and experimental results.
    Cummings EB; Singh AK
    Anal Chem; 2003 Sep; 75(18):4724-31. PubMed ID: 14674447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactive manipulation of blood cells using a lens-integrated liquid crystal display based optoelectronic tweezers system.
    Hwang H; Choi YJ; Choi W; Kim SH; Jang J; Park JK
    Electrophoresis; 2008 Mar; 29(6):1203-12. PubMed ID: 18297658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Escape from an Optoelectronic Tweezer Trap: experimental results and simulations.
    Zhang S; Nikitina A; Chen Y; Zhang Y; Liu L; Flood AG; Juvert J; Chamberlain MD; Kherani NP; Neale SL; Wheeler AR
    Opt Express; 2018 Mar; 26(5):5300-5309. PubMed ID: 29529735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resolution improvement of optoelectronic tweezers using patterned electrodes.
    Zaman MA; Wu M; Ren W; Jensen MA; Davis RW; Hesselink L
    Appl Phys Lett; 2023 Jul; 123(4):041104. PubMed ID: 37502178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optoelectronic tweezers: a versatile toolbox for nano-/micro-manipulation.
    Zhang S; Xu B; Elsayed M; Nan F; Liang W; Valley JK; Liu L; Huang Q; Wu MC; Wheeler AR
    Chem Soc Rev; 2022 Nov; 51(22):9203-9242. PubMed ID: 36285556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Miniaturized optoelectronic tweezers controlled by GaN micro-pixel light emitting diode arrays.
    Zarowna-Dabrowska A; Neale SL; Massoubre D; McKendry J; Rae BR; Henderson RK; Rose MJ; Yin H; Cooper JM; Gu E; Dawson MD
    Opt Express; 2011 Jan; 19(3):2720-8. PubMed ID: 21369093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optoelectronic Tweezers Micro-Well System for Highly Efficient Single-Cell Trapping, Dynamic Sorting, and Retrieval.
    Gan C; Zhang J; Chen B; Wang A; Xiong H; Zhao J; Wang C; Liang S; Feng L
    Small; 2024 Jun; 20(23):e2307329. PubMed ID: 38509856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction between positive and negative dielectric microparticles/microorganism in optoelectronic tweezers.
    Liang S; Gan C; Dai Y; Zhang C; Bai X; Zhang S; Wheeler AR; Chen H; Feng L
    Lab Chip; 2021 Nov; 21(22):4379-4389. PubMed ID: 34596652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parallel Manipulation and Flexible Assembly of Micro-Spiral
    Liang S; Sun J; Zhang C; Zhu Z; Dai Y; Gan C; Cai J; Chen H; Feng L
    Front Bioeng Biotechnol; 2022; 10():868821. PubMed ID: 35387303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic manipulation and patterning of microparticles and cells by using TiOPc-based optoelectronic dielectrophoresis.
    Yang SM; Yu TM; Huang HP; Ku MY; Hsu L; Liu CH
    Opt Lett; 2010 Jun; 35(12):1959-61. PubMed ID: 20548352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optofluidic cell manipulation for a biological microbeam.
    Grad M; Bigelow AW; Garty G; Attinger D; Brenner DJ
    Rev Sci Instrum; 2013 Jan; 84(1):014301. PubMed ID: 23387672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced cell trapping throughput using DC-biased AC electric field in a dielectrophoresis-based fluidic device with densely packed silica beads.
    Lewpiriyawong N; Xu G; Yang C
    Electrophoresis; 2018 Mar; 39(5-6):878-886. PubMed ID: 29288585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.