These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
339 related articles for article (PubMed ID: 19079777)
21. Microfluidics-based in vivo mimetic systems for the study of cellular biology. Kim D; Wu X; Young AT; Haynes CL Acc Chem Res; 2014 Apr; 47(4):1165-73. PubMed ID: 24555566 [TBL] [Abstract][Full Text] [Related]
22. Understanding the Early Biological Effects of Isoprene-Derived Particulate Matter Enhanced by Anthropogenic Pollutants. Surratt JD; Lin YH; Arashiro M; Vizuete WG; Zhang Z; Gold A; Jaspers I; Fry RC Res Rep Health Eff Inst; 2019 Mar; 2019(198):1-54. PubMed ID: 31872748 [TBL] [Abstract][Full Text] [Related]
23. Bioengineered 3D Glial Cell Culture Systems and Applications for Neurodegeneration and Neuroinflammation. Watson PMD; Kavanagh E; Allenby G; Vassey M SLAS Discov; 2017 Jun; 22(5):583-601. PubMed ID: 28346104 [TBL] [Abstract][Full Text] [Related]
24. Modelling the endothelial blood-CNS barriers: a method for the production of robust in vitro models of the rat blood-brain barrier and blood-spinal cord barrier. Watson PM; Paterson JC; Thom G; Ginman U; Lundquist S; Webster CI BMC Neurosci; 2013 Jun; 14():59. PubMed ID: 23773766 [TBL] [Abstract][Full Text] [Related]
25. Hydrogel Droplet Microfluidics for High-Throughput Single Molecule/Cell Analysis. Zhu Z; Yang CJ Acc Chem Res; 2017 Jan; 50(1):22-31. PubMed ID: 28029779 [TBL] [Abstract][Full Text] [Related]
26. Learning from our failures in blood-brain permeability: what can be done for new drug discovery? Martel S Expert Opin Drug Discov; 2015 Mar; 10(3):207-11. PubMed ID: 25658294 [TBL] [Abstract][Full Text] [Related]
27. Validation of in vitro cell-based human blood-brain barrier model using clinical positron emission tomography radioligands to predict in vivo human brain penetration. Mabondzo A; Bottlaender M; Guyot AC; Tsaouin K; Deverre JR; Balimane PV Mol Pharm; 2010 Oct; 7(5):1805-15. PubMed ID: 20795735 [TBL] [Abstract][Full Text] [Related]
28. Mimicking brain tissue binding in an in vitro model of the blood-brain barrier illustrates differences between in vitro and in vivo methods for assessing the rate of brain penetration. Heymans M; Sevin E; Gosselet F; Lundquist S; Culot M Eur J Pharm Biopharm; 2018 Jun; 127():453-461. PubMed ID: 29602020 [TBL] [Abstract][Full Text] [Related]
29. Local controlled drug delivery to the brain: mathematical modeling of the underlying mass transport mechanisms. Siepmann J; Siepmann F; Florence AT Int J Pharm; 2006 May; 314(2):101-19. PubMed ID: 16647231 [TBL] [Abstract][Full Text] [Related]
30. Evaluating drug efficacy and toxicology in three dimensions: using synthetic extracellular matrices in drug discovery. Prestwich GD Acc Chem Res; 2008 Jan; 41(1):139-48. PubMed ID: 17655274 [TBL] [Abstract][Full Text] [Related]
31. Starch-Based Hydrogels as a Drug Delivery System in Biomedical Applications. Lee CS; Hwang HS Gels; 2023 Dec; 9(12):. PubMed ID: 38131937 [TBL] [Abstract][Full Text] [Related]
32. Blood-brain barrier models and their relevance for a successful development of CNS drug delivery systems: a review. Bicker J; Alves G; Fortuna A; Falcão A Eur J Pharm Biopharm; 2014 Aug; 87(3):409-32. PubMed ID: 24686194 [TBL] [Abstract][Full Text] [Related]
33. Experimental liver models: From cell culture techniques to microfluidic organs-on-chip. Polidoro MA; Ferrari E; Marzorati S; Lleo A; Rasponi M Liver Int; 2021 Aug; 41(8):1744-1761. PubMed ID: 33966344 [TBL] [Abstract][Full Text] [Related]
34. Three-dimensional perfused human Kostrzewski T; Cornforth T; Snow SA; Ouro-Gnao L; Rowe C; Large EM; Hughes DJ World J Gastroenterol; 2017 Jan; 23(2):204-215. PubMed ID: 28127194 [TBL] [Abstract][Full Text] [Related]
35. Zebrafish as a visual and dynamic model to study the transport of nanosized drug delivery systems across the biological barriers. Li Y; Miao X; Chen T; Yi X; Wang R; Zhao H; Lee SM; Wang X; Zheng Y Colloids Surf B Biointerfaces; 2017 Aug; 156():227-235. PubMed ID: 28544957 [TBL] [Abstract][Full Text] [Related]
36. More advantages in detecting bone and soft tissue metastases from prostate cancer using Pianou NK; Stavrou PZ; Vlontzou E; Rondogianni P; Exarhos DN; Datseris IE Hell J Nucl Med; 2019; 22(1):6-9. PubMed ID: 30843003 [TBL] [Abstract][Full Text] [Related]
37. 3D Engineering of Ocular Tissues for Disease Modeling and Drug Testing. Boutin ME; Hampton C; Quinn R; Ferrer M; Song MJ Adv Exp Med Biol; 2019; 1186():171-193. PubMed ID: 31654390 [TBL] [Abstract][Full Text] [Related]
38. The future of Cochrane Neonatal. Soll RF; Ovelman C; McGuire W Early Hum Dev; 2020 Nov; 150():105191. PubMed ID: 33036834 [TBL] [Abstract][Full Text] [Related]
39. Utilizing virtual experiments to increase understanding of discrepancies involving in vitro-to-in vivo predictions of hepatic clearance. Krishnan P; Smith AK; Ropella GEP; Dutta L; Kennedy RC; Hunt CA PLoS One; 2022; 17(7):e0269775. PubMed ID: 35867653 [TBL] [Abstract][Full Text] [Related]