These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 19079780)
1. Enhanced Förster Resonance Energy Transfer (FRET) on Single Metal Particle. Zhang J; Fu Y; Lakowicz JR J Phys Chem C Nanomater Interfaces; 2007 Jan; 111(1):50-56. PubMed ID: 19079780 [TBL] [Abstract][Full Text] [Related]
2. Enhanced Förster Resonance Energy Transfer on Single Metal Particle. 2. Dependence on Donor-Acceptor Separation Distance, Particle Size, and Distance from Metal Surface. Zhang J; Fu Y; Chowdhury MH; Lakowicz JR J Phys Chem C Nanomater Interfaces; 2007 Aug; 111(32):11784-11792. PubMed ID: 19890406 [TBL] [Abstract][Full Text] [Related]
3. Fluorescence resonance energy transfer (FRET) and competing processes in donor-acceptor substituted DNA strands: a comparative study of ensemble and single-molecule data. Dietrich A; Buschmann V; Müller C; Sauer M J Biotechnol; 2002 Jan; 82(3):211-31. PubMed ID: 11999691 [TBL] [Abstract][Full Text] [Related]
4. Impact of a charged neighboring particle on Förster resonance energy transfer (FRET). Abeywickrama C; Premaratne M; Gunapala SD; Andrews DL J Phys Condens Matter; 2020 Feb; 32(9):095305. PubMed ID: 31722329 [TBL] [Abstract][Full Text] [Related]
5. A revisitation of the Förster energy transfer near a metallic spherical nanoparticle: (1) Efficiency enhancement or reduction? (2) The control of the Förster radius of the unbounded medium. (3) The impact of the local density of states. Gonzaga-Galeana JA; Zurita-Sánchez JR J Chem Phys; 2013 Dec; 139(24):244302. PubMed ID: 24387365 [TBL] [Abstract][Full Text] [Related]
6. Effects of Metallic Silver Particles on Resonance Energy Transfer Between Fluorophores Bound to DNA. Lakowicz JR; Kuśba J; Shen Y; Malicka J; D'Auria S; Gryczynski Z; Gryczynski I J Fluoresc; 2003 Jan; 13(1):69-77. PubMed ID: 31588166 [TBL] [Abstract][Full Text] [Related]
7. FRET enhancement close to gold nanoparticles positioned in DNA origami constructs. Aissaoui N; Moth-Poulsen K; Käll M; Johansson P; Wilhelmsson LM; Albinsson B Nanoscale; 2017 Jan; 9(2):673-683. PubMed ID: 27942672 [TBL] [Abstract][Full Text] [Related]
8. Multiplexed Biosensing and Bioimaging Using Lanthanide-Based Time-Gated Förster Resonance Energy Transfer. Qiu X; Xu J; Cardoso Dos Santos M; Hildebrandt N Acc Chem Res; 2022 Feb; 55(4):551-564. PubMed ID: 35084817 [TBL] [Abstract][Full Text] [Related]
9. Gas-phase Förster resonance energy transfer in mass-selected and trapped ions. Langeland J; Lindkvist TT; Kjær C; Nielsen SB Mass Spectrom Rev; 2024; 43(3):477-499. PubMed ID: 36514825 [TBL] [Abstract][Full Text] [Related]
10. Accurate single-pair Förster resonant energy transfer through combination of pulsed interleaved excitation, time correlated single-photon counting, and fluorescence correlation spectroscopy. Rüttinger S; Macdonald R; Krämer B; Koberling F; Roos M; Hildt E J Biomed Opt; 2006; 11(2):024012. PubMed ID: 16674202 [TBL] [Abstract][Full Text] [Related]
11. Detection of Protein Interactions in the Cytoplasm and Periplasm of Meiresonne NY; Alexeeva S; van der Ploeg R; den Blaauwen T Bio Protoc; 2018 Jan; 8(2):e2697. PubMed ID: 34179246 [TBL] [Abstract][Full Text] [Related]
12. Flow cytometric measurement of fluorescence (Förster) resonance energy transfer from cyan fluorescent protein to yellow fluorescent protein using single-laser excitation at 458 nm. He L; Bradrick TD; Karpova TS; Wu X; Fox MH; Fischer R; McNally JG; Knutson JR; Grammer AC; Lipsky PE Cytometry A; 2003 May; 53(1):39-54. PubMed ID: 12701131 [TBL] [Abstract][Full Text] [Related]
13. Disentanglement of excited-state dynamics with implications for FRET measurements: two-dimensional electronic spectroscopy of a BODIPY-functionalized cavitand. Otto JP; Wang L; Pochorovski I; Blau SM; Aspuru-Guzik A; Bao Z; Engel GS; Chiu M Chem Sci; 2018 Apr; 9(15):3694-3703. PubMed ID: 29780500 [TBL] [Abstract][Full Text] [Related]
14. Förster resonance energy transfer and kinesin motor proteins. Prevo B; Peterman EJ Chem Soc Rev; 2014 Feb; 43(4):1144-55. PubMed ID: 24071719 [TBL] [Abstract][Full Text] [Related]
15. Imaging protein interactions by FRET microscopy: FRET measurements by sensitized emission. Verveer PJ; Rocks O; Harpur AG; Bastiaens PI CSH Protoc; 2006 Nov; 2006(6):. PubMed ID: 22485984 [TBL] [Abstract][Full Text] [Related]
16. A simulation study on the influence of energy migration and relative interaction strengths of homo- and hetero-FRET on the net FRET efficiency. Rout J; Swain BC; Sakshi ; Biswas S; Das AK; Tripathy U Spectrochim Acta A Mol Biomol Spectrosc; 2020 Feb; 226():117599. PubMed ID: 31751800 [TBL] [Abstract][Full Text] [Related]
17. Homogenous FRET-based fluorescent immunoassay for deoxynivalenol detection by controlling the distance of donor-acceptor couple. Goryacheva OA; Beloglazova NV; Goryacheva IY; De Saeger S Talanta; 2021 Apr; 225():121973. PubMed ID: 33592807 [TBL] [Abstract][Full Text] [Related]
18. Diffusion-enhanced Förster resonance energy transfer and the effects of external quenchers and the donor quantum yield. Jacob MH; Dsouza RN; Ghosh I; Norouzy A; Schwarzlose T; Nau WM J Phys Chem B; 2013 Jan; 117(1):185-98. PubMed ID: 23215358 [TBL] [Abstract][Full Text] [Related]
19. Nanophotonic enhancement of the Förster resonance energy-transfer rate with single nanoapertures. Ghenuche P; de Torres J; Moparthi SB; Grigoriev V; Wenger J Nano Lett; 2014 Aug; 14(8):4707-14. PubMed ID: 25020141 [TBL] [Abstract][Full Text] [Related]
20. Perrin and Förster unified: Dual-laser triple-polarization FRET (3polFRET) for interactions at the Förster-distance and beyond. Ungvári T; Gogolák P; Bagdány M; Damjanovich L; Bene L Biochim Biophys Acta; 2016 Apr; 1863(4):703-16. PubMed ID: 26854711 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]