These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
392 related articles for article (PubMed ID: 19081074)
21. Characterization of CCDC28B reveals its role in ciliogenesis and provides insight to understand its modifier effect on Bardet-Biedl syndrome. Cardenas-Rodriguez M; Osborn DP; Irigoín F; Graña M; Romero H; Beales PL; Badano JL Hum Genet; 2013 Jan; 132(1):91-105. PubMed ID: 23015189 [TBL] [Abstract][Full Text] [Related]
22. Phosphatase inhibitor 2 promotes acetylation of tubulin in the primary cilium of human retinal epithelial cells. Wang W; Brautigan DL BMC Cell Biol; 2008 Nov; 9():62. PubMed ID: 19036150 [TBL] [Abstract][Full Text] [Related]
23. HDAC6 is a microtubule-associated deacetylase. Hubbert C; Guardiola A; Shao R; Kawaguchi Y; Ito A; Nixon A; Yoshida M; Wang XF; Yao TP Nature; 2002 May; 417(6887):455-8. PubMed ID: 12024216 [TBL] [Abstract][Full Text] [Related]
24. Ubiquitylation of BBSome is required for ciliary assembly and signaling. Chiuso F; Delle Donne R; Giamundo G; Rinaldi L; Borzacchiello D; Moraca F; Intartaglia D; Iannucci R; Senatore E; Lignitto L; Garbi C; Conflitti P; Catalanotti B; Conte I; Feliciello A EMBO Rep; 2023 Apr; 24(4):e55571. PubMed ID: 36744302 [TBL] [Abstract][Full Text] [Related]
25. Tandem affinity purification of the BBSome, a critical regulator of Rab8 in ciliogenesis. Nachury MV Methods Enzymol; 2008; 439():501-13. PubMed ID: 18374185 [TBL] [Abstract][Full Text] [Related]
26. Loss of Deacetylation Enzymes Hdac6 and Sirt2 Promotes Acetylation of Cytoplasmic Tubulin, but Suppresses Axonemal Acetylation in Zebrafish Cilia. Łysyganicz PK; Pooranachandran N; Liu X; Adamson KI; Zielonka K; Elworthy S; van Eeden FJ; Grierson AJ; Malicki JJ Front Cell Dev Biol; 2021; 9():676214. PubMed ID: 34268305 [TBL] [Abstract][Full Text] [Related]
27. BBS4 and BBS5 show functional redundancy in the BBSome to regulate the degradative sorting of ciliary sensory receptors. Xu Q; Zhang Y; Wei Q; Huang Y; Li Y; Ling K; Hu J Sci Rep; 2015 Jul; 5():11855. PubMed ID: 26150102 [TBL] [Abstract][Full Text] [Related]
28. Bardet-Biedl syndrome proteins 1 and 3 regulate the ciliary trafficking of polycystic kidney disease 1 protein. Su X; Driscoll K; Yao G; Raed A; Wu M; Beales PL; Zhou J Hum Mol Genet; 2014 Oct; 23(20):5441-51. PubMed ID: 24939912 [TBL] [Abstract][Full Text] [Related]
29. Organization, functions, and mechanisms of the BBSome in development, ciliopathies, and beyond. Tian X; Zhao H; Zhou J Elife; 2023 Jul; 12():. PubMed ID: 37466224 [TBL] [Abstract][Full Text] [Related]
30. The intraflagellar transport protein IFT27 promotes BBSome exit from cilia through the GTPase ARL6/BBS3. Liew GM; Ye F; Nager AR; Murphy JP; Lee JS; Aguiar M; Breslow DK; Gygi SP; Nachury MV Dev Cell; 2014 Nov; 31(3):265-278. PubMed ID: 25443296 [TBL] [Abstract][Full Text] [Related]
31. Cep70 regulates microtubule stability by interacting with HDAC6. Shi X; Yao Y; Wang Y; Zhang Y; Huang Q; Zhou J; Liu M; Li D FEBS Lett; 2015 Jul; 589(15):1771-7. PubMed ID: 26112604 [TBL] [Abstract][Full Text] [Related]
32. Bardet-Biedl syndrome proteins control the cilia length through regulation of actin polymerization. Hernandez-Hernandez V; Pravincumar P; Diaz-Font A; May-Simera H; Jenkins D; Knight M; Beales PL Hum Mol Genet; 2013 Oct; 22(19):3858-68. PubMed ID: 23716571 [TBL] [Abstract][Full Text] [Related]
33. Bardet-Biedl syndrome genes are important in retrograde intracellular trafficking and Kupffer's vesicle cilia function. Yen HJ; Tayeh MK; Mullins RF; Stone EM; Sheffield VC; Slusarski DC Hum Mol Genet; 2006 Mar; 15(5):667-77. PubMed ID: 16399798 [TBL] [Abstract][Full Text] [Related]
34. Taking vesicular transport to the cilium. Leroux MR Cell; 2007 Jun; 129(6):1041-3. PubMed ID: 17574016 [TBL] [Abstract][Full Text] [Related]
35. Basal body dysfunction is a likely cause of pleiotropic Bardet-Biedl syndrome. Ansley SJ; Badano JL; Blacque OE; Hill J; Hoskins BE; Leitch CC; Kim JC; Ross AJ; Eichers ER; Teslovich TM; Mah AK; Johnsen RC; Cavender JC; Lewis RA; Leroux MR; Beales PL; Katsanis N Nature; 2003 Oct; 425(6958):628-33. PubMed ID: 14520415 [TBL] [Abstract][Full Text] [Related]
36. Structure and activation mechanism of the BBSome membrane protein trafficking complex. Singh SK; Gui M; Koh F; Yip MC; Brown A Elife; 2020 Jan; 9():. PubMed ID: 31939736 [TBL] [Abstract][Full Text] [Related]
37. Primary cilia membrane assembly is initiated by Rab11 and transport protein particle II (TRAPPII) complex-dependent trafficking of Rabin8 to the centrosome. Westlake CJ; Baye LM; Nachury MV; Wright KJ; Ervin KE; Phu L; Chalouni C; Beck JS; Kirkpatrick DS; Slusarski DC; Sheffield VC; Scheller RH; Jackson PK Proc Natl Acad Sci U S A; 2011 Feb; 108(7):2759-64. PubMed ID: 21273506 [TBL] [Abstract][Full Text] [Related]
38. BBS6, BBS10, and BBS12 form a complex with CCT/TRiC family chaperonins and mediate BBSome assembly. Seo S; Baye LM; Schulz NP; Beck JS; Zhang Q; Slusarski DC; Sheffield VC Proc Natl Acad Sci U S A; 2010 Jan; 107(4):1488-93. PubMed ID: 20080638 [TBL] [Abstract][Full Text] [Related]
39. Structure of the human BBSome core complex. Klink BU; Gatsogiannis C; Hofnagel O; Wittinghofer A; Raunser S Elife; 2020 Jan; 9():. PubMed ID: 31951201 [TBL] [Abstract][Full Text] [Related]
40. Regulation of microtubule dynamics by inhibition of the tubulin deacetylase HDAC6. Zilberman Y; Ballestrem C; Carramusa L; Mazitschek R; Khochbin S; Bershadsky A J Cell Sci; 2009 Oct; 122(Pt 19):3531-41. PubMed ID: 19737819 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]