These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 19081102)

  • 21. Retention in overloaded columns, an experimental approach.
    González FR; Romero LM
    J Chromatogr A; 2006 Sep; 1128(1-2):203-7. PubMed ID: 16815425
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Model for predicting comprehensive two-dimensional gas chromatography retention times.
    Seeley JV; Seeley SK
    J Chromatogr A; 2007 Nov; 1172(1):72-83. PubMed ID: 17936771
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Prediction of retention times in comprehensive two-dimensional gas chromatography using thermodynamic models.
    McGinitie TM; Harynuk JJ
    J Chromatogr A; 2012 Sep; 1255():184-9. PubMed ID: 22386257
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prediction of retention times in temperature programmed gas chromatography using the retention equation derived from crystallization behavior of polymer.
    Li X; Fan G; Gong C; Ao M; Li H
    J Chromatogr A; 2013 Feb; 1277():76-83. PubMed ID: 23332784
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Prediction of thermodynamic parameters in gas chromatography from molecular structure: hydrocarbons.
    Pompe M; Davis JM; Samuel CD
    J Chem Inf Comput Sci; 2004; 44(2):399-409. PubMed ID: 15032518
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Prediction of programmed-temperature retention values of naphthas by artificial neural networks.
    Qi JH; Zhang XY; Zhang RS; Liu MC; Hu ZD; Xue HF; Fan BT
    SAR QSAR Environ Res; 2000; 11(2):117-31. PubMed ID: 10877473
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Retention time locking procedure for comprehensive two-dimensional gas chromatography.
    Mommers J; Knooren J; Mengerink Y; Wilbers A; Vreuls R; van der Wal S
    J Chromatogr A; 2011 May; 1218(21):3159-65. PubMed ID: 20864113
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thermodynamic prediction of polymer retention in temperature-programmed HPLC.
    Ryu J; Chang T
    Anal Chem; 2005 Oct; 77(19):6347-52. PubMed ID: 16194098
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rapid determination of thermodynamic parameters from one-dimensional programmed-temperature gas chromatography for use in retention time prediction in comprehensive multidimensional chromatography.
    McGinitie TM; Ebrahimi-Najafabadi H; Harynuk JJ
    J Chromatogr A; 2014 Jan; 1325():204-12. PubMed ID: 24377740
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fast and accurate numerical method for predicting gas chromatography retention time.
    Claumann CA; Wüst Zibetti A; Bolzan A; Machado RA; Pinto LT
    J Chromatogr A; 2015 Aug; 1406():258-65. PubMed ID: 26117221
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Retention modeling and retention time prediction in gas chromatography and flow-modulation comprehensive two-dimensional gas chromatography: The contribution of pressure on solute partition.
    Burel A; Vaccaro M; Cartigny Y; Tisse S; Coquerel G; Cardinael P
    J Chromatogr A; 2017 Feb; 1485():101-119. PubMed ID: 28108081
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Extension of the system constants database for open-tubular columns: system maps at low and intermediate temperatures for four new columns.
    Atapattu SN; Eggers K; Poole CF; Kiridena W; Koziol WW
    J Chromatogr A; 2009 Mar; 1216(10):1640-9. PubMed ID: 19081101
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-speed gas chromatography using synchronized dual-valve injection.
    Gross GM; Prazen BJ; Grate JW; Synovec RE
    Anal Chem; 2004 Jul; 76(13):3517-24. PubMed ID: 15228319
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of sources of irreproducibility of retention indices under programmed temperature gas chromatography conditions.
    Wu L; Cho IK; Li Y; Zhang G; Li QX
    J Chromatogr A; 2017 Apr; 1495():57-63. PubMed ID: 28343685
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Determination of adsorption entropies on solid surfaces by reversed-flow gas chromatography.
    Dremetsika AV; Siskos PA; Katsanos NA
    J Hazard Mater; 2007 Nov; 149(3):603-8. PubMed ID: 17706346
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Retention-time locked methods in gas chromatography.
    Etxebarria N; Zuloaga O; Olivares M; Bartolomé LJ; Navarro P
    J Chromatogr A; 2009 Mar; 1216(10):1624-9. PubMed ID: 19150537
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Retention index of essential oil in temperature-programmed capillary column gas chromatography].
    Chang LP; Sheng LS; Yang MZ; An DK
    Yao Xue Xue Bao; 1989; 24(11):847-52. PubMed ID: 2618683
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dual-injection system with multiple injections for determining bidimensional retention indexes in comprehensive two-dimensional gas chromatography.
    Bieri S; Marriott PJ
    Anal Chem; 2008 Feb; 80(3):760-8. PubMed ID: 18177017
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modeling the combined effect of temperature and organic modifier content on reversed-phase chromatographic retention. Effectiveness of derived models in isocratic and isothermal mode retention prediction.
    Pappa-Louisi A; Nikitas P; Papachristos K; Zisi C
    J Chromatogr A; 2008 Aug; 1201(1):27-34. PubMed ID: 18554606
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prediction of the resolution of capillary columns in different conditions of inlet pressure and temperature.
    Vezzani S; Moretti P; Castello G; Travaini G
    J Chromatogr A; 2004 Feb; 1026(1-2):201-21. PubMed ID: 14763748
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.