These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 19081285)

  • 1. A quality-guided displacement tracking algorithm for ultrasonic elasticity imaging.
    Chen L; Treece GM; Lindop JE; Gee AH; Prager RW
    Med Image Anal; 2009 Apr; 13(2):286-96. PubMed ID: 19081285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasound elastography: a dynamic programming approach.
    Rivaz H; Boctor E; Foroughi P; Zellars R; Fichtinger G; Hager G
    IEEE Trans Med Imaging; 2008 Oct; 27(10):1373-7. PubMed ID: 18815089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 2-D locally regularized tissue strain estimation from radio-frequency ultrasound images: theoretical developments and results on experimental data.
    Brusseau E; Kybic J; Deprez JF; Basset O
    IEEE Trans Med Imaging; 2008 Feb; 27(2):145-60. PubMed ID: 18334437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A freehand ultrasound elastography system with tracking for in vivo applications.
    Foroughi P; Kang HJ; Carnegie DA; van Vledder MG; Choti MA; Hager GD; Boctor EM
    Ultrasound Med Biol; 2013 Feb; 39(2):211-25. PubMed ID: 23257351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elasticity reconstruction from displacement and confidence measures of a multi-compressed ultrasound RF sequence.
    Li J; Cui Y; Kadour M; Noble JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Feb; 55(2):319-26. PubMed ID: 18334339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An autocorrelation-based method for improvement of sub-pixel displacement estimation in ultrasound strain imaging.
    Kim S; Aglyamov SR; Park S; O'Donnell M; Emelianov SY
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Apr; 58(4):838-43. PubMed ID: 21507761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Corrections to the displacement estimation based on analytic minimization of adaptive regularized cost functions for ultrasound elastography.
    Peng B; Lai J; Wang L; Liu DC
    Biomed Mater Eng; 2014; 24(6):2801-10. PubMed ID: 25226985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A 3-D Region-Growing Motion-Tracking Method for Ultrasound Elasticity Imaging.
    Wang Y; Jiang J; Hall TJ
    Ultrasound Med Biol; 2018 Aug; 44(8):1638-1653. PubMed ID: 29784436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast axial and lateral displacement estimation in myocardial elastography based on RF signals with predictions.
    Zhang Y; Sun T; Teng Y; Li H; Kang Y
    Biomed Mater Eng; 2015; 26 Suppl 1():S1633-9. PubMed ID: 26405928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct mean strain estimation for elastography using nearest-neighbor weighted least-squares approach in the frequency domain.
    Hasan MK; Anas EM; Alam SK; Lee SY
    Ultrasound Med Biol; 2012 Oct; 38(10):1759-77. PubMed ID: 22818879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduction of background in optoacoustic image sequences obtained under tissue deformation.
    Jaeger M; Siegenthaler L; Kitz M; Frenz M
    J Biomed Opt; 2009; 14(5):054011. PubMed ID: 19895113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical quality assessment of myocardial elastography with in vivo validation.
    Lee WN; Ingrassia CM; Fung-Kee-Fung SD; Costa KD; Holmes JW; Konofagou EE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Nov; 54(11):2233-45. PubMed ID: 18051158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of cardiovascular liver motion for the eventual application of elasticity imaging to the liver in vivo.
    Kolen AF; Miller NR; Ahmed EE; Bamber JC
    Phys Med Biol; 2004 Sep; 49(18):4187-206. PubMed ID: 15509060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multilevel hybrid 2D strain imaging algorithm for ultrasound sector/phased arrays.
    Chen H; Varghese T
    Med Phys; 2009 Jun; 36(6):2098-106. PubMed ID: 19610299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validation of continuously tagged MRI for the measurement of dynamic 3D skeletal muscle tissue deformation.
    Moerman KM; Sprengers AM; Simms CK; Lamerichs RM; Stoker J; Nederveen AJ
    Med Phys; 2012 Apr; 39(4):1793-810. PubMed ID: 22482602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A 2D strain estimator with numerical optimization method for soft-tissue elastography.
    Liu K; Zhang P; Shao J; Zhu X; Zhang Y; Bai J
    Ultrasonics; 2009 Dec; 49(8):723-32. PubMed ID: 19560794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tracked ultrasound elastography (TrUE).
    Foroughi P; Rivaz H; Fleming IN; Hager GD; Boctor EM
    Med Image Comput Comput Assist Interv; 2010; 13(Pt 2):9-16. PubMed ID: 20879293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A generalized speckle tracking algorithm for ultrasonic strain imaging using dynamic programming.
    Jiang J; Hall TJ
    Ultrasound Med Biol; 2009 Nov; 35(11):1863-79. PubMed ID: 19682789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Speckle tracking ultrasound is independent of insonation angle and gain: an in vitro investigation of agreement with sonomicrometry.
    Sivesgaard K; Christensen SD; Nygaard H; Hasenkam JM; Sloth E
    J Am Soc Echocardiogr; 2009 Jul; 22(7):852-8. PubMed ID: 19515531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial Compounding Technique to Obtain Rotation Elastogram: A Feasibility Study.
    Kothawala A; Chandramoorthi S; Reddy NRK; Thittai AK
    Ultrasound Med Biol; 2017 Jun; 43(6):1290-1301. PubMed ID: 28433440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.