These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

525 related articles for article (PubMed ID: 19081792)

  • 1. Human gene coexpression landscape: confident network derived from tissue transcriptomic profiles.
    Prieto C; Risueño A; Fontanillo C; De las Rivas J
    PLoS One; 2008; 3(12):e3911. PubMed ID: 19081792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolutionary hallmarks of the human proteome: chasing the age and coregulation of protein-coding genes.
    Lopes KP; Campos-Laborie FJ; Vialle RA; Ortega JM; De Las Rivas J
    BMC Genomics; 2016 Oct; 17(Suppl 8):725. PubMed ID: 27801289
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring tomato gene functions based on coexpression modules using graph clustering and differential coexpression approaches.
    Fukushima A; Nishizawa T; Hayakumo M; Hikosaka S; Saito K; Goto E; Kusano M
    Plant Physiol; 2012 Apr; 158(4):1487-502. PubMed ID: 22307966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subspace differential coexpression analysis: problem definition and a general approach.
    Fang G; Kuang R; Pandey G; Steinbach M; Myers CL; Kumar V
    Pac Symp Biocomput; 2010; ():145-56. PubMed ID: 19908367
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Network analysis of transcriptomic diversity amongst resident tissue macrophages and dendritic cells in the mouse mononuclear phagocyte system.
    Summers KM; Bush SJ; Hume DA
    PLoS Biol; 2020 Oct; 18(10):e3000859. PubMed ID: 33031383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Key genes and functional coexpression modules involved in the pathogenesis of systemic lupus erythematosus.
    Yan S; Wang W; Gao G; Cheng M; Wang X; Wang Z; Ma X; Chai C; Xu D
    J Cell Physiol; 2018 Nov; 233(11):8815-8825. PubMed ID: 29806703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-tissue analysis of co-expression networks by higher-order generalized singular value decomposition identifies functionally coherent transcriptional modules.
    Xiao X; Moreno-Moral A; Rotival M; Bottolo L; Petretto E
    PLoS Genet; 2014 Jan; 10(1):e1004006. PubMed ID: 24391511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene coexpression network analysis as a source of functional annotation for rice genes.
    Childs KL; Davidson RM; Buell CR
    PLoS One; 2011; 6(7):e22196. PubMed ID: 21799793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential coexpression in human tissues and the confounding effect of mean expression levels.
    Farahbod M; Pavlidis P
    Bioinformatics; 2019 Jan; 35(1):55-61. PubMed ID: 29982380
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disease gene prioritization by integrating tissue-specific molecular networks using a robust multi-network model.
    Ni J; Koyuturk M; Tong H; Haines J; Xu R; Zhang X
    BMC Bioinformatics; 2016 Nov; 17(1):453. PubMed ID: 27829360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A graph-based approach to systematically reconstruct human transcriptional regulatory modules.
    Yan X; Mehan MR; Huang Y; Waterman MS; Yu PS; Zhou XJ
    Bioinformatics; 2007 Jul; 23(13):i577-86. PubMed ID: 17646346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of gene expression profiles and key genes in subchondral bone of osteoarthritis using weighted gene coexpression network analysis.
    Guo SM; Wang JX; Li J; Xu FY; Wei Q; Wang HM; Huang HQ; Zheng SL; Xie YJ; Zhang C
    J Cell Biochem; 2018 Sep; 119(9):7687-7695. PubMed ID: 29904957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous clustering of multiple gene expression and physical interaction datasets.
    Narayanan M; Vetta A; Schadt EE; Zhu J
    PLoS Comput Biol; 2010 Apr; 6(4):e1000742. PubMed ID: 20419151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene coexpression network topology of cardiac development, hypertrophy, and failure.
    Dewey FE; Perez MV; Wheeler MT; Watt C; Spin J; Langfelder P; Horvath S; Hannenhalli S; Cappola TP; Ashley EA
    Circ Cardiovasc Genet; 2011 Feb; 4(1):26-35. PubMed ID: 21127201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of Gene Coexpression Profiles and Construction of Conserved Gene Networks to Find Functional Modules.
    Okamura Y; Obayashi T; Kinoshita K
    PLoS One; 2015; 10(7):e0132039. PubMed ID: 26147120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional analysis beyond enrichment: non-redundant reciprocal linkage of genes and biological terms.
    Fontanillo C; Nogales-Cadenas R; Pascual-Montano A; De las Rivas J
    PLoS One; 2011; 6(9):e24289. PubMed ID: 21949701
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global similarity and local divergence in human and mouse gene co-expression networks.
    Tsaparas P; Mariño-Ramírez L; Bodenreider O; Koonin EV; Jordan IK
    BMC Evol Biol; 2006 Sep; 6():70. PubMed ID: 16968540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TF-Cluster: a pipeline for identifying functionally coordinated transcription factors via network decomposition of the shared coexpression connectivity matrix (SCCM).
    Nie J; Stewart R; Zhang H; Thomson JA; Ruan F; Cui X; Wei H
    BMC Syst Biol; 2011 Apr; 5():53. PubMed ID: 21496241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of common coexpression modules based on quantitative network comparison.
    Jo Y; Kim S; Lee D
    BMC Bioinformatics; 2018 Jun; 19(Suppl 8):213. PubMed ID: 29897320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Network motif-based identification of transcription factor-target gene relationships by integrating multi-source biological data.
    Zhang Y; Xuan J; de los Reyes BG; Clarke R; Ressom HW
    BMC Bioinformatics; 2008 Apr; 9():203. PubMed ID: 18426580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.