These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

533 related articles for article (PubMed ID: 19082034)

  • 1. Nanostructured thin solid oxide fuel cells with high power density.
    Ignatiev A; Chen X; Wu N; Lu Z; Smith L
    Dalton Trans; 2008 Oct; (40):5501-6. PubMed ID: 19082034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A redox-stable efficient anode for solid-oxide fuel cells.
    Tao S; Irvine JT
    Nat Mater; 2003 May; 2(5):320-3. PubMed ID: 12692533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A high-performance cathode for the next generation of solid-oxide fuel cells.
    Shao Z; Haile SM
    Nature; 2004 Sep; 431(7005):170-3. PubMed ID: 15356627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of anode microstructure on solid oxide fuel cells.
    Suzuki T; Hasan Z; Funahashi Y; Yamaguchi T; Fujishiro Y; Awano M
    Science; 2009 Aug; 325(5942):852-5. PubMed ID: 19679808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of interlayer on structure and performance of anode-supported SOFC single cells.
    Eom TW; Yang HK; Kim KH; Yoon HH; Kim JS; Park SJ
    Ultramicroscopy; 2008 Sep; 108(10):1283-7. PubMed ID: 18571861
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A thermally self-sustained micro solid-oxide fuel-cell stack with high power density.
    Shao Z; Haile SM; Ahn J; Ronney PD; Zhan Z; Barnett SA
    Nature; 2005 Jun; 435(7043):795-8. PubMed ID: 15944699
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved solid oxide fuel cell performance with nanostructured electrolytes.
    Chao CC; Hsu CM; Cui Y; Prinz FB
    ACS Nano; 2011 Jul; 5(7):5692-6. PubMed ID: 21657222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous NOx and hydrocarbon emissions control for lean-burn engines using low-temperature solid oxide fuel cell at open circuit.
    Huang TJ; Hsu SH; Wu CY
    Environ Sci Technol; 2012 Feb; 46(4):2324-9. PubMed ID: 22289082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microstructure tailoring of the nickel oxide-Yttria-stabilized zirconia hollow fibers toward high-performance microtubular solid oxide fuel cells.
    Liu T; Ren C; Fang S; Wang Y; Chen F
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):18853-60. PubMed ID: 25313919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced low-temperature power density of solid oxide fuel cell by nickel nanoparticle infiltration into pre-fired Ni/yttria-stabilized zirconia anode.
    Kang LS; Park JL; Lee S; Jin YH; Hong HS; Lee CG; Kim BS
    J Nanosci Nanotechnol; 2014 Dec; 14(12):8974-7. PubMed ID: 25970993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasma-enhanced atomic layer deposition of nanoscale yttria-stabilized zirconia electrolyte for solid oxide fuel cells with porous substrate.
    Ji S; Cho GY; Yu W; Su PC; Lee MH; Cha SW
    ACS Appl Mater Interfaces; 2015 Feb; 7(5):2998-3002. PubMed ID: 25625537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanocrystal Engineering of Thin-Film Yttria-Stabilized Zirconia Electrolytes for Low-Temperature Solid-Oxide Fuel Cells.
    Ryu S; Choi IW; Kim YJ; Lee S; Jeong W; Yu W; Cho GY; Cha SW
    ACS Appl Mater Interfaces; 2023 Sep; 15(36):42659-42666. PubMed ID: 37665642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of lithia and substrate on the electrochemical performance of a lithia/cobalt oxide composite thin-film anode.
    Yu Y; Shi Y; Chen CH
    Chem Asian J; 2006 Dec; 1(6):826-31. PubMed ID: 17441125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biogas as a fuel for solid oxide fuel cells and synthesis gas production: effects of ceria-doping and hydrogen sulfide on the performance of nickel-based anode materials.
    Laycock CJ; Staniforth JZ; Ormerod RM
    Dalton Trans; 2011 May; 40(20):5494-504. PubMed ID: 21494706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solid oxide fuel cells with both high voltage and power output by utilizing beneficial interfacial reaction.
    Su C; Shao Z; Lin Y; Wu Y; Wang H
    Phys Chem Chem Phys; 2012 Sep; 14(35):12173-81. PubMed ID: 22870505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Post-annealing of thin-film yttria stabilized zirconia electrolytes for anode-supported low-temperature solid oxide fuel cells.
    Bae J; Chang I; Kang S; Hong S; Cha SW; Kim YB
    J Nanosci Nanotechnol; 2014 Dec; 14(12):9294-9. PubMed ID: 25971054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Properties of Intermediate-Temperature Solid Oxide Fuel Cells with Thin Film Gadolinium-Doped Ceria Electrolyte.
    Solovyev A; Shipilova A; Smolyanskiy E; Rabotkin S; Semenov V
    Membranes (Basel); 2022 Sep; 12(9):. PubMed ID: 36135914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PEALD YSZ-based bilayer electrolyte for thin film-solid oxide fuel cells.
    Yu W; Cho GY; Hong S; Lee Y; Kim YB; An J; Cha SW
    Nanotechnology; 2016 Oct; 27(41):415402. PubMed ID: 27595193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solid Oxide Fuel Cells with Magnetron Sputtered Single-Layer SDC and Multilayer SDC/YSZ/SDC Electrolytes.
    Solovyev A; Shipilova A; Smolyanskiy E
    Membranes (Basel); 2023 Jun; 13(6):. PubMed ID: 37367789
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advanced anodes for high-temperature fuel cells.
    Atkinson A; Barnett S; Gorte RJ; Irvine JT; McEvoy AJ; Mogensen M; Singhal SC; Vohs J
    Nat Mater; 2004 Jan; 3(1):17-27. PubMed ID: 14704781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.