These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 1908223)

  • 1. The mechanism of tyrosinase-catalysed oxidative decarboxylation of alpha-(3,4-dihydroxyphenyl)-lactic acid.
    Sugumaran M; Dali H; Semensi V
    Biochem J; 1991 Aug; 277 ( Pt 3)(Pt 3):849-53. PubMed ID: 1908223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanistic studies on tyrosinase-catalysed oxidative decarboxylation of 3,4-dihydroxymandelic acid.
    Sugumaran M; Dali H; Semensi V
    Biochem J; 1992 Jan; 281 ( Pt 2)(Pt 2):353-7. PubMed ID: 1736884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidation of 3,4-dihydroxymandelic acid catalyzed by tyrosinase.
    Martínez Ortiz F; Tudela Serrano J; Rodríguez López JN; Varón Castellanos R; Lozano Teruel JA; García-Cánovas F
    Biochim Biophys Acta; 1988 Nov; 957(1):158-63. PubMed ID: 2846069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical and enzymic oxidation by tyrosinase of 3,4-dihydroxymandelate.
    Cabanes J; Sanchez-Ferrer A; Bru R; García-Carmona F
    Biochem J; 1988 Dec; 256(2):681-4. PubMed ID: 3146978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tyrosinase catalyzes an unusual oxidative decarboxylation of 3,4-dihydroxymandelate.
    Sugumaran M
    Biochemistry; 1986 Aug; 25(16):4489-92. PubMed ID: 3094574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosynthesis of dehydro-N-acetyldopamine by a soluble enzyme preparation from the larval cuticle of Sarcophaga bullata involves intermediary formation of N-acetyldopamine quinone and N-acetyldopamine quinone methide.
    Saul SJ; Sugumaran M
    Arch Insect Biochem Physiol; 1990; 15(4):237-54. PubMed ID: 2134025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Initial mushroom tyrosinase-catalysed oxidation product of 4-hydroxyanisole is 4-methoxy-ortho-benzoquinone.
    Naish S; Cooksey CJ; Riley PA
    Pigment Cell Res; 1988; 1(6):379-81. PubMed ID: 3148921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct evidence for quinone-quinone methide tautomerism during tyrosinase catalyzed oxidation of 4-allylcatechol.
    Sugumaran M; Bolton J
    Biochem Biophys Res Commun; 1995 Aug; 213(2):469-74. PubMed ID: 7646501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tyrosinase-catalyzed unusual oxidative dimerization of 1,2-dehydro-N-acetyldopamine.
    Sugumaran M; Dali H; Semensi V; Hennigan B
    J Biol Chem; 1987 Aug; 262(22):10546-9. PubMed ID: 3112146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laccase--and not tyrosinase--is the enzyme responsible for quinone methide production from 2,6-dimethoxy-4-allyl phenol.
    Sugumaran M; Bolton JL
    Arch Biochem Biophys; 1998 May; 353(2):207-12. PubMed ID: 9606954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidation of 3,4-dihydroxybenzylamine affords 3,4-dihydroxybenzaldehyde via the quinone methide intermediate.
    Sugumaran M
    Pigment Cell Res; 1995 Oct; 8(5):250-4. PubMed ID: 8789199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of a new quinone methide intermediate during the oxidative transformation of 3,4-dihydroxyphenylacetic acids: implication for eumelanin biosynthesis.
    Sugumaran M; Duggaraju P; Jayachandran E; Kirk KL
    Arch Biochem Biophys; 1999 Nov; 371(1):98-106. PubMed ID: 10525294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the mechanism of side chain oxidation of N-beta-alanyldopamine by cuticular enzymes from Sarcophaga bullata.
    Sugumaran M; Saul SJ; Dali H
    Arch Insect Biochem Physiol; 1990; 15(4):255-69. PubMed ID: 2134026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calculating molar absorptivities for quinones: application to the measurement of tyrosinase activity.
    Muñoz JL; García-Molina F; Varón R; Rodriguez-Lopez JN; García-Cánovas F; Tudela J
    Anal Biochem; 2006 Apr; 351(1):128-38. PubMed ID: 16476401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Metabolic Fate of ortho-Quinones Derived from Catecholamine Metabolites.
    Ito S; Yamanaka Y; Ojika M; Wakamatsu K
    Int J Mol Sci; 2016 Jan; 17(2):. PubMed ID: 26828480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidation of 4-alkylphenols and catechols by tyrosinase: ortho-substituents alter the mechanism of quinoid formation.
    Krol ES; Bolton JL
    Chem Biol Interact; 1997 Apr; 104(1):11-27. PubMed ID: 9158692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical determination of diphenol oxidase activity using high-pressure liquid chromatography.
    Li JY; Christensen BM; Tracy JW
    Anal Biochem; 1990 Nov; 190(2):354-9. PubMed ID: 2127163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quinone methide as a new intermediate in eumelanin biosynthesis.
    Sugumaran M; Semensi V
    J Biol Chem; 1991 Apr; 266(10):6073-8. PubMed ID: 2007565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonenzymatic transformations of enzymatically generated N-acetyldopamine quinone and isomeric dihydrocaffeiyl methyl amide quinone.
    Sugumaran M; Semensi V; Dali H; Saul S
    FEBS Lett; 1989 Sep; 255(2):345-9. PubMed ID: 2507359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical Reactivities of
    Ito S; Sugumaran M; Wakamatsu K
    Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32846902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.