These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
360 related articles for article (PubMed ID: 19082531)
21. Genetic determinants of host ranges of Bacillus sphaericus mosquito larvicidal toxins. Berry C; Hindley J; Ehrhardt AF; Grounds T; de Souza I; Davidson EW J Bacteriol; 1993 Jan; 175(2):510-8. PubMed ID: 8419297 [TBL] [Abstract][Full Text] [Related]
22. [Evaluation of the triflumuron and the mixture of Bacillus thuringiensis plus Bacillus sphaericus for control of the immature stages of Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae) in catch basins]. Giraldo-Calderón GI; Pérez M; Morales CA; Ocampo CB Biomedica; 2008 Jun; 28(2):224-33. PubMed ID: 18719724 [TBL] [Abstract][Full Text] [Related]
23. Cloning and characterization of a cytolytic and mosquito larvicidal delta-endotoxin from Bacillus thuringiensis subsp. darmstadiensis. Promdonkoy B; Chewawiwat N; Tanapongpipat S; Luxananil P; Panyim S Curr Microbiol; 2003 Feb; 46(2):94-8. PubMed ID: 12520362 [TBL] [Abstract][Full Text] [Related]
24. Cyt1A from Bacillus thuringiensis synergizes activity of Bacillus sphaericus against Aedes aegypti (Diptera: Culicidae). Wirth MC; Federici BA; Walton WE Appl Environ Microbiol; 2000 Mar; 66(3):1093-7. PubMed ID: 10698776 [TBL] [Abstract][Full Text] [Related]
25. Molecular cloning of the 130-kilodalton mosquitocidal delta-endotoxin gene of Bacillus thuringiensis subsp. israelensis in Bacillus sphaericus. Trisrisook M; Pantuwatana S; Bhumiratana A; Panbangred W Appl Environ Microbiol; 1990 Jun; 56(6):1710-6. PubMed ID: 2200339 [TBL] [Abstract][Full Text] [Related]
26. Expression and purification of the active soluble form of Bacillus sphaericus binary toxin for structural analysis. Srisucharitpanit K; Inchana P; Rungrod A; Promdonkoy B; Boonserm P Protein Expr Purif; 2012 Apr; 82(2):368-72. PubMed ID: 22381463 [TBL] [Abstract][Full Text] [Related]
27. Comparative delta-endotoxins of Bacillus thuringiensis against mosquito vectors (Aedes aegypti and Culex pipiens). Lonc E; Kucińska J; Rydzanicz K Acta Microbiol Pol; 2003; 52(3):293-300. PubMed ID: 14743982 [TBL] [Abstract][Full Text] [Related]
28. Production of Lysinibacillus sphaericus Mosquitocidal Protein Mtx2 from Bacillus subtilis as a Secretory Protein. Trakulnaleamsai C; Promdonkoy B; Soonsanga S Protein Pept Lett; 2021; 28(9):1054-1060. PubMed ID: 34137359 [TBL] [Abstract][Full Text] [Related]
29. [Toxicity of isolates of Bacillus thuringiensis from Wroclaw against larvae of Aedes aegypti]. Lonc E; Kucińska J; Rydzanicz K Wiad Parazytol; 2001; 47(3):297-303. PubMed ID: 16894738 [TBL] [Abstract][Full Text] [Related]
30. Insecticide resistance development in Culex quinquefasciatus (Say), Aedes aegypti (L.) and Aedes albopictus (Skuse) larvae against malathion, permethrin and temephos. Hamdan H; Sofian-Azirun M; Nazni W; Lee HL Trop Biomed; 2005 Jun; 22(1):45-52. PubMed ID: 16880753 [TBL] [Abstract][Full Text] [Related]
31. Cyt1A from Bacillus thuringiensis restores toxicity of Bacillus sphaericus against resistant Culex quinquefasciatus (Diptera: Culicidae). Wirth MC; Walton WE; Federici BA J Med Entomol; 2000 May; 37(3):401-7. PubMed ID: 15535584 [TBL] [Abstract][Full Text] [Related]
32. Cross-resistance spectra of Culex quinquefasciatus resistant to mosquitocidal toxins of Bacillus thuringiensis towards recombinant Escherichia coli expressing genes from B. thuringiensis ssp. israelensis. Wirth MC; Zaritsky A; Ben-Dov E; Manasherob R; Khasdan V; Boussiba S; Walton WE Environ Microbiol; 2007 Jun; 9(6):1393-401. PubMed ID: 17504477 [TBL] [Abstract][Full Text] [Related]
33. Susceptibility of Aedes aegypti and Culex quinquefasciatus Larvae to gedunin-related limonoids. Gurulingappa H; Tare V; Pawar P; Tungikar V; Jorapur YR; Madhavi S; Bhat SV Chem Biodivers; 2009 Jun; 6(6):897-902. PubMed ID: 19551731 [TBL] [Abstract][Full Text] [Related]
34. Enhancement of Cry19Aa mosquitocidal activity against Aedes aegypti by mutations in the putative loop regions of domain II. Abdullah MA; Dean DH Appl Environ Microbiol; 2004 Jun; 70(6):3769-71. PubMed ID: 15184189 [TBL] [Abstract][Full Text] [Related]
35. Efficient synthesis of mosquitocidal toxins in Asticcacaulis excentricus demonstrates potential of gram-negative bacteria in mosquito control. Liu JW; Yap WH; Thanabalu T; Porter AG Nat Biotechnol; 1996 Mar; 14(3):343-7. PubMed ID: 9630898 [TBL] [Abstract][Full Text] [Related]
36. Toxicity of Bacillus sphaericus LP1-G against susceptible and resistant Culex quinquefasciatus and the cloning of the mosquitocidal toxin gene. Shi YX; Zheng DS; Yuan ZM Curr Microbiol; 2003 Sep; 47(3):226-30. PubMed ID: 14570274 [TBL] [Abstract][Full Text] [Related]
38. In vivo identification of Bacillus thuringiensis Cry4Ba toxin receptors by RNA interference knockdown of glycosylphosphatidylinositol-linked aminopeptidase N transcripts in Aedes aegypti larvae. Saengwiman S; Aroonkesorn A; Dedvisitsakul P; Sakdee S; Leetachewa S; Angsuthanasombat C; Pootanakit K Biochem Biophys Res Commun; 2011 Apr; 407(4):708-13. PubMed ID: 21439264 [TBL] [Abstract][Full Text] [Related]
39. [The efficacy of a combined preparation based on Bacillus sphaericus and Bac. thuringiensis H-14 against the larvae of blood-sucking mosquitoes]. Chabanenko AA; Bogdanova EN; Ermishev IuV; Dremova VP Med Parazitol (Mosk); 1992; (1):23-5. PubMed ID: 1354836 [TBL] [Abstract][Full Text] [Related]
40. Efficacy of Lysinibacillus sphaericus against mixed-cultures of field-collected and laboratory larvae of Aedes aegypti and Culex quinquefasciatus. Santana-Martinez JC; Silva JJ; Dussan J Bull Entomol Res; 2019 Feb; 109(1):111-118. PubMed ID: 29784071 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]