These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 19082946)

  • 1. Determination of acrolein by high-voltage capillary electrophoresis from oxidized fatty acids.
    Medina-Navarro R
    Methods Mol Biol; 2008; 477():149-60. PubMed ID: 19082946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of acrolein from the ozone oxidation of unsaturated fatty acids.
    Medina-Navarro R; Mercado-Pichardo E; Hernández-Pérez O; Hicks JJ
    Hum Exp Toxicol; 1999 Nov; 18(11):677-82. PubMed ID: 10602392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glucose-stimulated acrolein production from unsaturated fatty acids.
    Medina-Navarro R; Duran-Reyes G; Diaz-Flores M; Hicks JJ; Kumate J
    Hum Exp Toxicol; 2004 Feb; 23(2):101-5. PubMed ID: 15070069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Current status of acrolein as a lipid peroxidation product.
    Uchida K
    Trends Cardiovasc Med; 1999 Jul; 9(5):109-13. PubMed ID: 10639724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous determination of acrolein, malonaldehyde and 4-hydroxy-2-nonenal produced from lipids oxidized with Fenton's reagent.
    Miyake T; Shibamoto T
    Food Chem Toxicol; 1996 Oct; 34(10):1009-11. PubMed ID: 9012777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trapping effects of green and black tea extracts on peroxidation-derived carbonyl substances of seal blubber oil.
    Zhu Q; Liang CP; Cheng KW; Peng X; Lo CY; Shahidi F; Chen F; Ho CT; Wang M
    J Agric Food Chem; 2009 Feb; 57(3):1065-9. PubMed ID: 19154106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Separation and determination of in vitro oxidized phospholipids by capillary zone electrophoresis.
    Ho YL; Chiu JH; Wu CY; Liu MY
    Anal Biochem; 2007 Aug; 367(2):210-8. PubMed ID: 17553450
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and validation of new analytical method for acrolein in air.
    Yasuhara A; Dennis KJ; Shibamoto T
    J Assoc Off Anal Chem; 1989; 72(5):749-51. PubMed ID: 2808236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reactive Carbonyl Species Derived from Omega-3 and Omega-6 Fatty Acids.
    Wang Y; Cui P
    J Agric Food Chem; 2015 Jul; 63(28):6293-6. PubMed ID: 26151719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidized and unoxidized fatty acyl esters.
    Sergent O; Cillard J
    Methods Mol Biol; 1998; 108():131-7. PubMed ID: 9921523
    [No Abstract]   [Full Text] [Related]  

  • 11. Separation of Nile Blue-labelled fatty acids by CE with absorbance detection using a red light-emitting diode.
    Breadmore MC; Henderson RD; Fakhari AR; Macka M; Haddad PR
    Electrophoresis; 2007 Apr; 28(8):1252-8. PubMed ID: 17367109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimizing a dansylhydrazine (DNSH) based method for measuring airborne acrolein and other unsaturated carbonyls.
    Herrington J; Zhang L; Whitaker D; Sheldon L; Zhang JJ
    J Environ Monit; 2005 Oct; 7(10):969-76. PubMed ID: 16193168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glucose autoxidation produces acrolein from lipid peroxidation in vitro.
    Medina-Navarro R; Durán-Reyes G; Díaz-Flores M; Kumate Rodríguez J; Hicks JJ
    Clin Chim Acta; 2003 Nov; 337(1-2):183-5. PubMed ID: 14568199
    [No Abstract]   [Full Text] [Related]  

  • 14. Reactivity of hydrazinophthalazine drugs with the lipid peroxidation products acrolein and crotonaldehyde.
    Kaminskas LM; Pyke SM; Burcham PC
    Org Biomol Chem; 2004 Sep; 2(18):2578-84. PubMed ID: 15351821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast high-throughput method for the determination of acidity constants by capillary electrophoresis: I. Monoprotic weak acids and bases.
    Fuguet E; Ràfols C; Bosch E; Rosés M
    J Chromatogr A; 2009 Apr; 1216(17):3646-51. PubMed ID: 19168179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidative degradation of lipids during mashing.
    Arts MJ; Grun C; de Jong RL; Voss HP; Bast A; Mueller MJ; Haenen GR
    J Agric Food Chem; 2007 Aug; 55(17):7010-4. PubMed ID: 17637059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aldehyde-sequestering drugs: tools for studying protein damage by lipid peroxidation products.
    Burcham PC; Kaminskas LM; Fontaine FR; Petersen DR; Pyke SM
    Toxicology; 2002 Dec; 181-182():229-36. PubMed ID: 12505316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acrolein sequestering ability of the endogenous tripeptide glycyl-histidyl-lysine (GHK): characterization of conjugation products by ESI-MSn and theoretical calculations.
    Beretta G; Arlandini E; Artali R; Anton JM; Maffei Facino R
    J Pharm Biomed Anal; 2008 Jul; 47(3):596-602. PubMed ID: 18378108
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The reaction of 2-thiobarbituric acid with biologically active alpha,beta-unsaturated aldehydes.
    Witz G; Lawrie NJ; Zaccaria A; Ferran HE; Goldstein BD
    J Free Radic Biol Med; 1986; 2(1):33-9. PubMed ID: 3772040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Unexplored Chemical Reactions of Endogenous Acrolein: Detection, Toxicity, and Biological Roles].
    Pradipta AR; Tanaka K
    Yakugaku Zasshi; 2017; 137(3):301-306. PubMed ID: 28250324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.