These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 19082961)

  • 1. A systems approach demonstrating sphingolipid-dependent transcription in stress responses.
    Wilder AJ; Cowart LA
    Methods Mol Biol; 2008; 477():369-81. PubMed ID: 19082961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using genomic and lipidomic strategies to investigate sphingolipid function in the yeast heat-stress response.
    Cowart LA; Hannun YA
    Biochem Soc Trans; 2005 Nov; 33(Pt 5):1166-9. PubMed ID: 16246073
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functions and metabolism of sphingolipids in Saccharomyces cerevisiae.
    Dickson RC; Sumanasekera C; Lester RL
    Prog Lipid Res; 2006 Nov; 45(6):447-65. PubMed ID: 16730802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A systems biology approach to study glucose repression in the yeast Saccharomyces cerevisiae.
    Westergaard SL; Oliveira AP; Bro C; Olsson L; Nielsen J
    Biotechnol Bioeng; 2007 Jan; 96(1):134-45. PubMed ID: 16878332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Yeast sphingolipid metabolism: clues and connections.
    Sims KJ; Spassieva SD; Voit EO; Obeid LM
    Biochem Cell Biol; 2004 Feb; 82(1):45-61. PubMed ID: 15052327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of crosstalks between the Snf1 kinase complex and sphingolipid metabolism in S. cerevisiae via systems biology approaches.
    Borklu Yucel E; Ulgen KO
    Mol Biosyst; 2013 Nov; 9(11):2914-31. PubMed ID: 24056632
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The cellular response to heat stress in the goby Gillichthys mirabilis: a cDNA microarray and protein-level analysis.
    Buckley BA; Gracey AY; Somero GN
    J Exp Biol; 2006 Jul; 209(Pt 14):2660-77. PubMed ID: 16809457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochemistry, cell biology and molecular biology of lipids of Saccharomyces cerevisiae.
    Daum G; Lees ND; Bard M; Dickson R
    Yeast; 1998 Dec; 14(16):1471-510. PubMed ID: 9885152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards the integration of computational systems biology and high-throughput data: supporting differential analysis of microarray gene expression data.
    Segata N; Blanzieri E; Priami C
    J Integr Bioinform; 2008 Jan; 5(1):. PubMed ID: 20134054
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Animal performance and stress: responses and tolerance limits at different levels of biological organisation.
    Kassahn KS; Crozier RH; Pörtner HO; Caley MJ
    Biol Rev Camb Philos Soc; 2009 May; 84(2):277-92. PubMed ID: 19344429
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sphingolipid functions in Saccharomyces cerevisiae: comparison to mammals.
    Dickson RC
    Annu Rev Biochem; 1998; 67():27-48. PubMed ID: 9759481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomarkers in aquatic plants: selection and utility.
    Brain RA; Cedergreen N
    Rev Environ Contam Toxicol; 2009; 198():49-109. PubMed ID: 19253039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational identification of altered metabolism using gene expression and metabolic pathways.
    Nam H; Lee J; Lee D
    Biotechnol Bioeng; 2009 Jul; 103(4):835-43. PubMed ID: 19378263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elucidation of the functional genomics of antioxidant-based inhibition of aflatoxin biosynthesis.
    Kim JH; Yu J; Mahoney N; Chan KL; Molyneux RJ; Varga J; Bhatnagar D; Cleveland TE; Nierman WC; Campbell BC
    Int J Food Microbiol; 2008 Feb; 122(1-2):49-60. PubMed ID: 18166238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple high-throughput analyses monitor the response of E. coli to perturbations.
    Ishii N; Nakahigashi K; Baba T; Robert M; Soga T; Kanai A; Hirasawa T; Naba M; Hirai K; Hoque A; Ho PY; Kakazu Y; Sugawara K; Igarashi S; Harada S; Masuda T; Sugiyama N; Togashi T; Hasegawa M; Takai Y; Yugi K; Arakawa K; Iwata N; Toya Y; Nakayama Y; Nishioka T; Shimizu K; Mori H; Tomita M
    Science; 2007 Apr; 316(5824):593-7. PubMed ID: 17379776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Meta-analysis of genome regulation and expression variability across hundreds of environmental and genetic perturbations in fission yeast.
    Pancaldi V; Schubert F; Bähler J
    Mol Biosyst; 2010 Mar; 6(3):543-52. PubMed ID: 20174682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptional and metabolic response in yeast Saccharomyces cerevisiae cells during polyethylene glycol-dependent transformation.
    Kawai S; Phan TA; Kono E; Harada K; Okai C; Fukusaki E; Murata K
    J Basic Microbiol; 2009 Feb; 49(1):73-81. PubMed ID: 18798174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Roles for sphingolipid biosynthesis in mediation of specific programs of the heat stress response determined through gene expression profiling.
    Cowart LA; Okamoto Y; Pinto FR; Gandy JL; Almeida JS; Hannun YA
    J Biol Chem; 2003 Aug; 278(32):30328-38. PubMed ID: 12740364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated omics approaches in plant systems biology.
    Fukushima A; Kusano M; Redestig H; Arita M; Saito K
    Curr Opin Chem Biol; 2009 Dec; 13(5-6):532-8. PubMed ID: 19837627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brave little yeast, please guide us to thebes: sphingolipid function in S. cerevisiae.
    Schneiter R
    Bioessays; 1999 Dec; 21(12):1004-10. PubMed ID: 10580985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.